
Pak. J. Engg. & Appl. Sci. Vol. 22 January, 2018 (p. 1–13)

1

Cloning in Popular Server Side Technologies using
Agile Development: An Empirical Study

Aisha Khan1, Hamid Abdul Basit2, Syed Mansoor Sarwar1*, and Muhammad Murtaza Yousaf 1

1. Punjab University College of Information Technology (PUCIT), University of the Punjab, Lahore, Pakistan

2. Department of Computer Science, School of Science and Engineering, Lahore University of Management

Sciences (LUMS), Lahore, Pakistan

 Corresponding Author: Email: syed.sarwar@pucit.edu.pk

Abstract

Several types of clones exist in software systems due to the copy-paste activity, developer limitations, language

restrictions, and software development lifecycle. This work studies the issues of cloning in server side

technologies for web applications. We studied 11 different reasonable size (average over 22K LOC) web

development projects coded in C#, Java, Ruby-on-Rails (ROR), and PHP based on the same set of

requirements. We identified and analyzed simple and structural clones present in these systems in order to

compare the different technologies in terms of number of clones, clone size, clone coverage, reasons behind

creation of clones, and the ratio of refactorable and non-refactorable clones. Our study focused only on the

base languages of these server side technologies. Our analyses show that C# has the highest number of clones

and ROR has the lowest. C# also has the highest and ROR has the lowest percentages of refactorable clones.

PHP has the highest clone coverage and ROR has the lowest. Average clone size for all projects ranges from

49.8 to 77.2 tokens. In terms of clone size, there are no significant differences across projects in the same

technology. The project size, project architecture, and developer approach dictate the percentage of clones

present in a software project. The use of frameworks and design patterns helps control generation of clones.

Key Words: Code Clones; Clone Coverage; Web Technologies; Refactoring.

1. Introduction

Clones (or code clones) are code segments of

considerable size that are similar to each other,

based on some similarity criteria. In software

development, copying a piece of code and then

reusing it, with or without changes, is called

cloning. The piece of copied code is called a

clone. Clones are undesirable from the software

maintenance point of view because they may

result in bug propagation. Although, many

researchers consider code clones harmful [13, 14],

some say that clones are not always harmful [5,

17]. Kasper and Godfrey [5] argue that code

clones can be used as a principled software

engineering tool.

Tools and techniques are available for detecting

clones in software [20, 21]. Clone detection is

helpful in plagiarism detection, origin analysis,

finding usage patterns, software evolution

research, and bug detection [11]. Mondal et al.

[22] performed the study with the intention of

finding the categories of clones that tend to

introduce bugs in the software systems. It also

helps in software maintenance, because there may

be more chances of update anomalies if a project

contains multiple clones of the same code

fragment. For example, it is common for
developers to copy-paste the same piece of code

multiple times with the intention to reuse it, but

such activities make maintenance difficult. An in-

depth study on the effort required to maintain a

cloned code can also be found at [24].

The presence of code clones increases the

likelihood of bug propagation, difficult to maintain

design, and higher maintenance cost [12]. If there

is a change in a clone, making the same change in

all of its instances may be time consuming and

chances of accidently missing some fragment are

significant. Thus, clone detection is important,

because techniques like refactoring can then be

used to unify similar clones. However, the

important to know is the types of clones that have

been detected. Along with the detection of clones

that are exact copies of each other, most probably

the copy-paste ones, similar code fragments and

larger similar structures in software as well as in

design can be more useful to detect. Design level

similarity detection may also help in better

understanding of the software architecture and

improving design. It may also be helpful in

reengineering legacy systems.

There have been studies on the analysis of clones

detected in software applications [1]. Attempts to

detect code clones at different granularity levels

also exist [25]. Several types of clones are present

in software systems. Sometimes these clones are

accidental [4] while at other times they are caused

by the simple copy-paste activity with the software

reuse intention, developer limitations, or even

Pak. J. Engg. Appl. Sci. Vol. 22, Jan., 2018

2

language limitations in creating suitable generic

abstractions. Rajapakse and Jarzabek [2] analyze

clones in web applications, but their analyses are

for exact clones only. Other studies [1] are not

specific to web technologies. Koschke et al. [23]

targeted open source projects written in C/C++ to

investigate software clone rates. Ours is the first

attempt to study the issues of cloning in server

side technologies for web applications.

Currently, different technologies are in use for

web development, including Java, .Net, ROR, and

PHP. Software developed in all of these

technologies usually contains clones, but some

might have more clones than others. Studying

cloning characteristics of web development

languages is a meaningful study, but no such study

is available in the literature. The purpose of our

study was to detect and analyze clones in the

systems developed with the above-mentioned web

technologies and observe their various

characteristics as well as to know which

technologies produce more clones and why.

This study not only focuses on simple clones but

also another category called “structural clones”.

Identification of structural clones adds to the

benefits of knowing simple clones. As structural

clones cover larger parts of code, they are more

meaningful.

A. What are structural clones?

Structural clones are “recurring patterns of simple

clones” usually due to the design level similarities

[9]. They embody such large-granularity, design-

level similar program structures that often map to

design or application domain concepts. Large

granularity, design-level similarity patterns often

create opportunities for reuse of design solutions

within a given system, or even across similar

systems. This form of reuse is natural and

enhances the current architecture-centric,

component-based reuse methods. These are often

induced by the analysis pattern and design

techniques used by the developers [7].

For an in-depth study of the cloning characteristics

in the above-mentioned technologies, we analyzed

11 social networking projects developed in these

technologies. We used Clone Miner [9] for clone

detection because it identifies simple and

structural clones, which was the focus of this

work. Clone Miner is a widely used and one of the

most cited tools [26]. This tool works on the

token-based clone detection technique. It uses

token-based simple clone detector [18]. It also

identifies structural clones, for which it

implements a structural clone detection technique.

This technique works with the information of

simple clones [19].

2. Related Work

There have been studies discussing the clones in

different technologies [1, 2]. Roy et al. discussed

clone management in detail along with future

research directions [27]. Studies on the evaluation

of different clone detection tools also exist

[28][29]. However, the work most relevant to our

study is described in [1], [2], and [3]. Rajapakse

and Jarzabek [2] explain cloning in web

applications of different sizes, developed using a

range of web technologies, and serving diverse

purposes. However, they consider simple clones

and analyze the files of the projects under study

for identifying clones as simple text. Their initial

results show cloning rates of up to 63% in both

newly developed and already maintained web

applications.

Roy and Cordy [1] describe a similar analysis

performed on the various open source systems

written in C, Java, and C# to identify near-miss

clones in them. Near-miss clones are clones where

the copied fragments are very similar to the

original ones, but are not exactly the same. Editing

activities such as changing comments and layouts,

changing the position of the source code elements

through blanks and new lines, and changing

identifiers, literals, and macros might have been

applied to such clones. The results of this study

show a large number of exact function clones in

these open source systems, but the number of

near-miss clones is even greater. Furthermore,

they found more exact clones in object-oriented

Java and C# systems than in C systems. The study

also found that the cloning characteristics are not

affected by the size of a system.

In [3], Roy and Cordy describe whether the

observations made in [1] also apply to scripting

languages. For this purpose, they analyzed some

open source projects built in Python and compared

their results to the results obtained for the projects

built in C, C#, and Java [1]. They found out that

the cloning characteristics of scripting languages

are similar to those of the traditional imperative

(compiled) languages.

Ours is an in-depth study of clones in web

applications to analyze simple and structural

clones. However, to keep the study focused, we

chose only a set of popular server side web

technologies, including ROR, PHP, C#, and Java.

C# and Java are used together with ASP.Net and

JSP, respectively, because currently these are
among the primary technologies being used for the

development of commercial web applications.

Cloning in Popular Server Side Technologies using Agile Development: An Empirical Study

3

This work is focused on web applications,

particularly, from the social networking domain.

We analyzed clones and identified those that could

be refactored [6]. We, however, did not study the

applications written in scripting languages,

including JSP and ASP.Net. However, based on

the conclusions of [1], we expect that the cloning

characteristics of the code in JSP, ASP.Net,

JavaScript, Python, HTML, etc. would be similar

to those of the associated base languages, i.e.,

Ruby, PHP, C#, and Java.

3. Research Questions

In order to compare the above stated popular

server-side technologies, our study mainly

concentrated on, but not limited to, four research

questions. Our research questions focus on

identifying cloning characteristics of the target

technologies and their comparison on the basis of

the several factors, including number of clones,

clone-to-code ratio and clone sizes. We also

investigated structural clones. The research

questions are:

RQ1: Which technology produces more simple

and structural clones, and what are the causes of

clone production?

RQ2: Are there some structural clones that are

present across multiple systems? Are they

technology dependent?

RQ3: Do the use of language frameworks, design

patterns, etc. affect clone production?

RQ4: What is the refactorable to non-refactorable

clones ratio in each technology? Which clones

could or could not be refactored?

These research questions concentrate on the

quantitative comparison of clone production,

calculating the clone-to-code ratio and average

clone size metrics. These metrics can also be

useful in similar studies. During our study, we

observed that some similar type of clones exist in

more than one projects. So, we not only studied

clone production within projects but also looked

for the clones present across multiple systems.

These results will help analyze whether code

clones are just caused by the underlying

technology or there are some types of clones

produced irrespective of underlying technology.

The effect of development approach on cloning is

also studied. As clones are duplicated or similar

pieces of code, some of them can be removed by

restructuring the code, called refactoring [30].

However, this type of code restructuring may not

be possible in all cases. The last research question

addresses the refactoring of clones in the chosen

technologies.

4. Methodology

We analyzed the source codes of 11 social

networking projects targeting the same set of

requirements and implemented in C#, Java, PHP,

and ROR. The basic architecture of the projects is

also quite similar.

Table 1: Percentage of base language code

Project Language Code Average

PHP1 67%
77%

PHP2 87%

J1 90% 90%

CS1 65%

44%
CS2 47%

CS3 36%

CS4 29%

ROR1 6%

16%
ROR2 18%

ROR3 25%

ROR4 14%

We limited our analysis to the code sections

written in the base language only, ignoring the

HTML code and the code segments written in

scripting languages. For example, in one of the

ROR projects, different source files include

JavaScript, CSS, YAML, HTML, DOS Batch,

Make, Python, and XML files. However, we

analyzed only the Ruby files with the .rb

extension. Similarly, only files with .cs, .java, and

.php extensions were considered for analysis in the

projects implemented in C#, Java, and PHP,

respectively. Table I shows the percentage of code

written in the base language for each project. After

the detection of clones, we manually analyzed the

projects for finding refactorable pieces of code.

4.1 Projects Details

We selected a set of 11 social network

projects/applications developed in imperative,

server side languages C#, Java, PHP, and ROR.

The details of these applications, including the

metrics related to their size, are given in Table 2.

The students in a graduate course offered at the

Lahore University of Management Sciences

(LUMS) developed the applications. The student

teams comprised skillful persons with prior

relevant industry experience of about two years on

average.

The projects were built with tight deadlines in

order to simulate the real-world experience of web

Pak. J. Engg. Appl. Sci. Vol. 22, Jan., 2018

4

development in a software industry, following the

agile development methodology. The developers

were provided with a set of features to be

implemented every week and were evaluated

against a functionality checklist. Figure 1 shows a

few examples of the functionality points.

Functionality Points

1. User can upload a picture

2. User can create albums

3. Users can post comments on pictures

4. Users can ‘like’ pictures

Figure 1: Functionality points

The applications were developed on the basis of

the same set of requirements. Further, the

requirements were not vague; they were based on

the popular social network application, Facebook.

The design requirements for the projects were also

well defined. Almost all projects followed the

Model View Controller (MVC) design pattern in

some form. Some of the projects were based on

the standard MVC frameworks, e.g., CakePHP

used by PHP1, Code Igniter used by PHP2, and

others implemented their own MVC. However,

CS2 used 2-tier architecture. This made the

architecture of the projects similar to a

considerable extent.

For the ROR and PHP applications, we considered

only the app directories, which mostly contain the

developer written code and, in some cases, also

contain auto-generated code. Other directories,

including plug-ins and CSS files, were not

considered for this study.

Table 2 shows that, on average, PHP applications

contain the maximum code, Ruby projects have

the minimum code, and C# and Java lie in the

middle. One of the main factors contributing

towards the large code size in case of PHP is the

use of standard frameworks: PHP1, PHP2, and

CS3 used CakePHP, CodeIgniter, and Object

Relational Mapping (ORM), respectively. The

other factor is the total functionality implemented.

Functionality count is the total number of

functions implemented.

Table 3 shows that the total functionality points

implemented by every project. ROR1 has the

smallest size and it is so because this project has

the minimum functionality point count.

Functionality point count is the count of the

number features implemented in a project.

C# projects have a mean of 306 functionality

points with standard deviation of 16 whereas the

ROR projects have a mean of 244 functionality

points and standard deviation of 101.

4.2 Introduction to Tool

We used Clone Miner [9] for our work. This tool

was initially developed to work with Java but was

adapted to works with C#, Ruby and also PHP. It

is a token-based clone detection tool that can

detect clones on the simple clones basis and is able

to generate structural clones based on the simple

clones detected in the code. It detects simple

clones in groups of simple clone sets (SCS).

Simple clones detected during the first step are

rearranged to generate structural clones.

Clone Miner detects clones within and across

methods, files, and directories. It stores its output

in the form of simple text files, filled with

numbers describing features of the different types

of cloning abstractions found in the analyzed

system. For example, for simple clones, Clone

Miner assigns an ID to each simple clone class and

then associates the number of instances belonging

to it as well as the length in tokens of each clone

Table 2: Project metric details

Project Language No. of Files LOC Comment LOC Input Size (In Tokens)

PHP1
PHP

415 49,640 18709 521628

PHP2 226 44,524 12539 256801

J1 Java 88 10,494 1905 55044

CS1

C#

288 27,392 10,411 175526

CS2 129 28,418 8,976 164759

CS3 443 51,121 20,346 220408

CS4 213 16,182 2,038 102051

ROR1

Ruby

41 1,513 410 5530

ROR2 135 3,622 649 27255

ROR3 151 8,671 1209 14278

ROR4 63 3,426 315 15784

Cloning in Popular Server Side Technologies using Agile Development: An Empirical Study

5

Table 3: Tokens to functionality ratio

Project Functionality Count Input Size (In Tokens)
Tokens/functionality

(AVG)

PHP1 286 521628 1824

PHP2 366 256801 702

J1 185 55044 298

CS1 286 175526 614

CS2 321 164759 513

CS3 316 220408 697

CS4 301 102051 339

ROR1 144 5530 38

ROR2 374 27255 73

ROR3 269 14278 53

ROR4 188 15784 84

Table 4: Simple clone statistics

Project SCC Clone Instances
Instances/ SCC

(AVG)

Maximum Clone

Size

Average Clone

Size

PHP1 1564 7294 4.7 850 69

PHP2 943 3438 3.6 577 54.9

J1 107 474 4.4 299 63.5

CS1 735 1947 2.6 977 71

CS2 659 3550 5.4 893 77.2

CS3 644 2779 4.3 337 67

CS4 348 1441 4.1 356 58

ROR1 6 13 2.2 96 49.4

ROR2 58 512 8.8 304 67.5

ROR3 37 77 2.1 160 51.8

ROR4 76 188 2.5 182 52.1

Average 470.6 1973.9 4.1 457.4 61.9

Table 5: Structural clones, MCC, and FCC

Project SCS
SCS

within File

SCS

across File
MCC

MCC

by File

MCC

across File
FCC

PHP1 1365 374 924 294 267 122 74

PHP2 855 280 222 155 57 90 14

J1 98 47 20 35 16 6 2

CS1 538 138 253 87 77 25 9

CS2 641 130 272 82 68 27 11

CS3 375 221 383 76 90 35 24

CS4 324 91 174 64 57 14 7

ROR1 4 3 2 2 2 0 0

ROR2 46 43 26 6 38 2 1

ROR3 28 11 10 8 8 1 1

ROR4 67 13 28 15 10 2 3

Average 395 123 210 75 63 29 13

Pak. J. Engg. Appl. Sci. Vol. 22, Jan., 2018

6

Table 6: PHP2 clone percentage among directories

Project Directories Clone Count Clone Percentage (%)

Controllers 110 13

Models 191 22

Libraries 12 1

Libraries/SimpleTest 102 12

Libraries/Extensions 7 1

Libraries/SimpleTest/Test 424 50

Views 9 1

instance. For each simple clone instance, it also

indicates the file ID that contains the instance and

the location of the instance in the file by stating

the start and end line numbers of that instance.

Input parameters for Clone Miner include

minimum similarities for simple clone classes,

minimum similarities for method clone classes,

and minimum similarities for file clone classes.

Minimum similarity refers to the minimum size in

tokens of similar code fragments that may be

considered as valid clone.

We detect clones in individual projects separately,

as shown in figure 2, and use the final results for

the clones to answer our research questions.

Select project

Get source code files, skip scripts files

Get clone statistics using Clone Miner

Analyze clones for refectoring

Document results

Compare

Results

Figure 2: Methodology for study

4.3 Metrics

Simple Clone Classes (SCC): A simple clone class

refers to simple clones detected in different files or

methods. Clone Miner provides the number of

classes of simple clones and instances of each

class in the files, i.e. the number of times a clone is

repeated in the project.

Structural Clones: Clone Miner uses the data about

simple clones to identify structural clones. SCS

can form structural clones.

Method Clone Classes (MCC) and File Clone

Classes (FCC): Method and file clones are similar

methods and files across a project. They are found

through clustering of SCS.

Clone Coverage (CC): Projects are analyzed to

find Clone Classes and Clone Instances. We

modified Clone Miner to provide CC, which is the

clone to code ratio.

 CC =
Cloned number of tokens

Total number of tokens
 (1)

Clone Size (CS): Clone size is the average length

in tokens of clone instances in a given project. For

each project, we recorded CS and the sizes of

longest and shortest clones.

4.4 Parameters

We performed our study according to following

parameters:

Clone size > 30 tokens

Minimum similaritiessimple clone classes = 30

Minimum similaritiesmethod clone classes = 30

Minimum similaritiesfile clone classes = 50

5. Analyses Outcomes

As shown in Table 4, PHP and C# projects had the

highest number of clones and ROR projects had

the smallest. Note that for PHP and ROR projects,

we ignored the default library/framework code that

developers had to copy into their project

directories. For example, PHP2 used the Cake

PHP framework and in order to use this

framework developers had to copy the framework

files (that contain the PHP code) into their project

directories. We ignored such framework code, as it

was neither specific to the project nor written by

the project developer. However, if some

framework code was generated specific for a

project, we considered it part of the project while

searching for clones. For example, in CS1 the

database mapping language file is used, which

contains an object relation mapping of the project

DB. Since this code is specific to the project,

therefore, we considered it as project code.

Table 4 and Table 5 show that PHP projects

contain the largest number of simple clone classes

Cloning in Popular Server Side Technologies using Agile Development: An Empirical Study

7

(SCC), structural clones, method clone classes,

and file clone classes. As shown in Table 2, the

sizes of the PHP projects are also the largest

because of the number of features implemented in

these projects on average, as shown in Table 3.

ROR2 implements the maximum number of

features and, as expected, also has the highest

clone coverage. But, if we compare ROR2 and

ROR3 with the PHP projects, it is clear that both

are very close in terms of the number of features

implemented by them. However, lines of code and

the number of clones are considerably different in

the two technologies. One reason for this

difference is the use of standard frameworks in the

PHP projects. Another reason is that ROR projects

involve many scripting and markup languages

along with the Ruby language, and we have

focused on the Ruby language code only.

Yet another reason behind this difference is

developer’s programming approach. For example,

there is a feature of comments in the social

networking applications and this feature is used in

multiple modules including posts, photo albums,

and videos. In CS2, this code is copied and pasted

across modules, whereas in CS3, the developer

created a common control for this feature and used

it instead of using copy-paste. The later approach

reduces the code size as well as the number of

clones in the code. Similarly, CS1 uses OR, which

generates a lot of code automatically, whereas CS2

uses common functions and SQL queries.

Table 4 shows that clones are larger in C# in terms

of their size. However, our analysis show that

clone size is larger for the projects that involve

some language provided framework, including

LINQ-to-SQL and CakePHP, but most of these

clones could be considered as non-refactorable

clones.

Now, we discuss answers to our proposed research

questions.

RQ1: Which technology produces more simple

and structural clones, and what are the causes of

clone production?

As shown in Table 4, the number of clones is

largest in the PHP and C# applications, while

ROR applications contain the smallest number of

clones.

All projects considered together have a mean of

470.6 simple clone classes with a standard

deviation of 493. However, C# projects have a

mean of 596 simple clone class with standard

deviation of 170 and ROR projects have a mean of

44 with standard deviation of 30. One reason for

the small average for ROR projects is code size,

which is smallest for the ROR projects, as shown

in Table 2.

Table 5 shows the total number of structural

clones, as well as structural clones across and

within files. Structural clones are almost in the

same ratio as simple clones among different

technologies. These are due to the requirements

composed of some of the already implemented

requirements, as well as due to the software

architecture and the coding approach followed by

the developers.

Table 6 shows the clone percentages among

different directories of a PHP project, making it

visible that a large number of clones is detected in

unit tests directory.

Table 7 shows clone-to-code ratio, i.e., clone

coverage, for all projects. C# and PHP projects

have the highest clone coverage. However, if we

ignore clones due to auto generated code, code for

unit testing, etc., C# comes at the top and ROR at

the bottom. Reason for excluding these is that unit

tests are the code snippets generated due to unit

testing performed by developers, but has nothing

to do with the features of functionality

implemented in an application. It is also observed

that a smaller piece of code in ROR can produce

more functionality when compared with code

written in Java, C#, or PHP.

The developer methodology is one of the causes of

clone production. As the projects under our study

were developed using the agile development

approach, developers were provided with the

requirements set every week to be implemented

during the same week. It seems that because of the

short deadlines, the developers mostly copied and

pasted code fragments from the previously written

code, instead of generalizing and refactoring it.

This development technique resulted in a lot of

clones. This is a reason which exists independent

of underlying technology but it is a commonly

observed reason for clones production. For

example, the requirements for all projects included

a ‘comments’ feature. This feature was repeated in

different forms, e.g., post comments, photo

comments, video comments, link comments, and

question comments. Most of the development

teams copied and pasted this code at all the places

it was needed.

However, one of the teams created a generic

control for comments once and then reused it

where needed, instead of copying and pasting the

whole feature code. This approach reduced such

type of clones in their project. The overall clone

count in this project is still high because of the use

of framework and a lot of framework generated

Pak. J. Engg. Appl. Sci. Vol. 22, Jan., 2018

8

code. This team used a sort of 2-tier architecture,

instead of using MVC, resulting in a lot of copied

and pasted code.

Table 7: Clone coverage

Project Clone Coverage

PHP1 37.50%

PHP2 50.80%

J1 33.70%

CS1 40.80%

CS2 50.51%

CS3 36.60%

CS4 40.45%

ROR1 11.51%

ROR2 51.65%

ROR3 21.815

ROR4 38.61%

Another observation is that there is a significant

difference among projects developed using the

same technologies. For example, there is a clear

difference in the number of clones for the two C#

projects: CS2 has 50.5% clone coverage and CS3

has 36.6% clone coverage. Similarly, the clone

coverage for the two ROR projects, ROR2 and

ROR3, are 51.65% and 21.81%, respectively.

Reasons for these differences are wrong design

and coding approach used by the developers,

including not following standards, violation of

architectural guidelines and rules, and not

exploiting reuse, and, perhaps, lack of knowledge

about a framework or technology. Some clones are

due to similar requirements for different features

also.

As shown in Table 4, clone sizes are larger in C#

in terms of the maximum size, compared to clones

in other technologies. Our analyses show that

clone sizes are larger for projects that involve the

use of some language provided frameworks,

including an ORM in CS1 and CakePHP in PHP1.

However, most of these clones could be

considered non-refactorable. If some large clones

are not due to the use of a framework rather its

developer written code, developers tend to copy

paste this piece of code if required somewhere

else. One reason can be the effort and time

required to look again into this large piece of code

in making it reusable.

RQ2: Are there some structural clones that are

present across multiple systems? Are they

technology dependent?

There are structural clones that are present across

systems. They are mostly due to the similar

software architectures. Those generated by a

framework are limited to that specific framework

architecture and are technology dependent clones.

As MVC is an architectural pattern, following

which an application is divided into three

components, i.e. Model, View, and Controller. The

study described in [16] reveals that there were

more clones in the controller than in the model.

Our study upholds these observations. One

possible reason for this is that model is for dealing

with data sources, e.g., database; changes in it do

not cause much effect on the other components of

application. Also, there are less frequent changes

in a model as compared to a controller. Hence, if

the model code is not auto generated, data source

specific code should be added to the model

whenever possible instead of adding it to the

controller. We observed that if extra code is added

to a controller, e.g., database related code; the

chances of duplication of that piece of code are

much higher.

Clones that are created due to the coding approach

followed by the developers or due to the ease by

copying and pasting, and not following the

conventions of patterns, frameworks, etc., are

independent of a specific language, as discussed

above in case of the MVC architecture.

RQ3: Does the usage of language frameworks,

design patterns, etc. affect clone production?

Some research has already been conducted on the

effect of framework usage on cloning, but at a

very limited level. [15] analyzes six web

applications of different sizes developed in classic

ASP.Net and ASP.Net MVC framework and tries

to see the effect of the use of framework on the

number of clones produced. The analyses indicate

that the use of a framework affects cloning and

there are significant differences with respect to the

cloning level in web applications that are

developed using frameworks in comparison to

those developed without any framework. The

author states applications developed using classic

ASP.Net are more prone to cloning than those

developed using ASP.Net MVC framework.

However, the study is limited to only C# and the

findings of this research may or may not hold for

other languages.

In [16], the authors describe a study of two

industrial dynamic web applications with distinct

architectures to identify patterns of clones. One

was developed using the traditional style with

HTML and PHP and the other one used the MVC

framework in PHP. Even though the two

applications had different architectures, the paper

reports that both applications had significant

number of clones. However, the cloning patterns

Cloning in Popular Server Side Technologies using Agile Development: An Empirical Study

9

were different. The clones in the traditionally

developed system were scattered in more files as

compared to those found in the MVC based

application. This study was limited to only two

applications, both written in PHP.

Gamma and Helm [22] also describe that design

patterns define abstraction in systems and this way

help reduce the complexity of a system. These

patterns can be considered reusable blocks

contributing to the overall architecture of the

system.

Our analyses say that the use of frameworks and

design patterns affects clone production in all four

technologies that we studied. For example, we

found out that CS2 did not follow any standard

software architecture and the developers had

simply tried to loosely divide their code into two

layers. Although they implemented generic

controls for common features and used those

instead of copying and pasting large fragments of

feature code, yet the clone coverage for CS2 came

out to be 50.51%, which is the highest among all

C# projects. The primary reason for such high

clone coverage is that the software architecture

was not properly designed and implemented. Even

in the generic controls, which were developed to

support reusability, code clones were detected.

According to our analyses, there were almost 40%

clones in the generic controls. C# projects have

most clones and database access file in C# code

have the highest percentage of clones, simply

because of not following frameworks or

architectural standards. Similarly, in the Java

project also, most of clones are in the database

access files. The reason is that connection to

database, and then statements for specifying query,

execution etc., are repeated in almost all functions.

The common steps could be specified once and

reused in each function.

The clone coverage in the Java project is 33%,

which is less than those of C# projects. The main

reason for this is the use of proper architecture.

The project team used the struts MVC framework

and made use of design patterns whenever

required. A major reason of clone production in

this project is the improper use of structs.

Similarly, ROR projects are MVC based and have

the least clone coverage, whereas most C# projects

do not follow architectures properly, which is a

major cause of larger clone coverage in these

projects.

Another type of clones that is significant in any

project, irrespective of the underlying technology,

is repeatedly doing initializations. Unnecessarily

creating an object multiple times can be avoided

by following design patterns.

However, there are some cases where the use of a

framework itself introduces clones, and such

clones are usually non-refactorable. For example,

ROR projects include clones that are to facilitate

requests from XML and HTML. These types of

clones cannot be refactored. Similarly, clones are

due to database level similarities too cannot be

removed through code refactoring.

Thus, the usage of frameworks standardizes code,

which causes fewer clones as compared to the

code written from scratch without following any

pattern of framework. However, framework may

also cause clones. But the percentage of clones

produced due to the use of a framework is lesser

than the percentage of clones avoided by its use.

RQ4: What is the ratio of refactorable and non-

refactorable clones in each technology? Which

clones could (or should) be and which could (or

should) not be refactored?

Refactoring is used to restructure code such that

functionally remains the same, but code design

improves [8]. As stated previously, code clones

are a potential cause of greater maintenance cost,

so it is usually advisable to detect and refactor

them. But before attempting any refactoring, we

should consider concerns such as software

stability, code ownership, and design clarity.

Some of the refactoring techniques are:

• Extract Classes

• Extract Methods

• Replace Parameter with a Method

• Generalize Type

Clones help in identifying the code fragments that

may be considered for refactoring. Most of the

automatically generated code is non-refactorable.

Generally, clones due to following reasons are not

refactored:

• Database design

• Technology or framework limitations

• Maintenance benefits

Some frameworks automatically generate code on

the basis of the database schema, e.g., ROR. In

case of automatically generated code, if the

database contains unnecessary or repetitive fields

and improper relationships, this should not be

refactored from code; rather the code should be

regenerated after the database schema

modifications.

Pak. J. Engg. Appl. Sci. Vol. 22, Jan., 2018

10

Some of the clones cannot, or should not, be

refactored. If we try to refactor them, they may

cause the following problems:

Property Definitions: Property definitions are

detected as clones but these cannot be refactored,

because each property is used for a different

purpose.

Language Provided Framework: Modification of

the code auto-generated by a language framework

is usually not recommended, because the

framework uses it later for different actions. If we

refactor such code fragments, the software

architecture maybe disturbed, causing difficult-to-

track bugs.

LINQ Queries: There are also some large LINQ

(Language Integrated Query) queries that are

identified as clones, but they also cannot be

refactored because of framework-imposed

limitations.

Table 8 shows the percentage of simple clones (as

shown in Table 4) that can be refactored. As stated

earlier, PHP contains the highest number of

clones, most of which are in the library directory

that includes extensions and unit tests. However,

as shown in Table 8, C# projects contain the

highest percentage of refactorable clones, followed

by Java. ROR has the smallest percentage of

refactorable clones.

Table 8: Refactorable clones

Project
Refactorable

Clones (%)
Average

PHP1 30% 32.50%

PHP2 35%

J1 63% 63%

CS1 62%

61%
CS2 72%

CS3 48%

CS4 61%

ROR1 38%

41%
ROR2 23%

ROR3 63%

ROR4 38%

Some of the reasons for the generation of

refactorable clones are developer laziness,

software architecture followed, and non-usage of

technology provided features that help avoid

clones, e.g., helper methods and ORM. Most of

the code generated in PHP and ROR is automated

because of the use of frameworks. The clones that

cannot (or should not) be refactored are mostly

due to language or technology dependence. Also,

in the case of high coupling there are higher

chances of introduction of errors in the code.

We analyzed manually simple clones in order to

differentiate between the clones that could be

refactored and those that could not be refactored.

For each project, we processed a random sample

of 25% SCC (simple clone classes) to identify the

clones that could be refactored. Also, we looked

for the reasons why some clones could not be

refactored.

CS1 uses an ORM framework. In this project, 35%

of the clones are in the sidekick.designer.cs file,

which is an ORM file auto-generated by the

language. Thus, the remaining 65% of the code in

CS1 is considered for refactoring, out of which

62% is refactorable. However, CS2, CS3, and CS4

do not use ORM generated or any other such large

amount of auto-generated code. Therefore, the

whole software of these projects can be considered

for refactoring decisions.

Some other clones, if refactored, can make

software more complex and difficult to

understand. Such clones are also not refactored in

order to achieve maintenance benefits.

Summary, Conclusion, and Future
Work

In this paper, we have presented the results of a

study to compare popular web technologies in

terms of cloning: C#, PHP, Java, and ROR. Our

analyses focused on the base languages only.

However, each of our projects involved the use of

several other technologies as well, including

JavaScript, CSS, ASP.Net, and JSP, but we did not

consider the code segments in these technologies

for our study. We chose a set of systems that all

belonged to the same domain and were developed

by groups of developers with more or less the

same level of expertise, in the same time frame,

and with the same set of requirements and

deadlines. The analyses of our results give us

insight about the technologies that are easier and

effective from the maintenance point of view and

how software written in those technologies could

be made even more maintenance friendly.

Here is the summary of our findings and

conclusions:

1. The number of clones in software depends on

several factors including project size, project

architectures, and developer approach.

2. Clone statistics for the software projects in the

same technology vary due to the use of

frameworks and the programming

methodology used by the developer. Clone

sizes also vary but not by much.

Cloning in Popular Server Side Technologies using Agile Development: An Empirical Study

11

3. The clone count is highest in C# and lowest in

ROR. The number of clone instances ranges

between 77 and 7294, where PHP projects

(5366 average clone instances) and C#

projects (2430 average clone instances)

contain the largest number of clone instances,

while ROR projects (790 average clone

instances) contain the smallest number of

clone instances.

4. Clone coverage ranges from 11.51% to

51.65%.The PHP projects have the highest

clone coverage with 44.15% average,

followed by C# with 42.09% average clone

coverage. However, ignoring the clones due to

auto generated, technology dependent, and

unit test code fragments brings C# at the top

and ROR with 30.89% average at the bottom.

5. Average clone sizes (in tokens) for the

different technologies range between 49.8 and

77.2. Clones in C# are larger as compared to

other technologies with an average size of

68.3 tokens. ROR has the smallest clones with

average clone size of 55.2 tokens. C# also had

the largest clone of 977 tokens and ROR had

the smallest clone of 96tokens.There are no

significant differences across projects of the

same technology with respect to clone size.

6. Structural clones are almost in the same ratio

as simple clones, i.e., high in PHP and C#.

7. Some clones are language independent such as

architecture dependent clones (e.g., due to

MVC) and clones due to the coding approach

followed and not following proper coding

conventions.

8. Programming languages provide support for

clone prevention, e.g., helper functions in PHP

and ROR help improve design by normalizing

repetitive pieces of code. Also, language IDEs

have integrated refactoring features, thereby

helping remove code clones.

9. The use of frameworks and design patterns

mostly helps in preventing clones.

10. The percentage of refactorable clone ranges

between 23 and 72. Java, with an average of

63% refactorable clones, contains the highest

percentage of refactorable clones followed by

C# with an average of 61% refactorable

clones. ROR has the least percentage of

refactorable clones, with an average of 41%.

11. Generally, clones generated due to the

following reasons should not be refactored:

a. Database design

b. Technology or framework limitations

c. Maintenance benefits

12. ROR provides most ease of maintenance

because it has the smallest number of clones,

smallest sized clones, and smallest percentage

of refactorable clones. It can, therefore, be

concluded that object-oriented ROR that has

features of both imperative and functional

languages, is much more expressive, and is

better than pure imperative languages for

maintenance purposes.

In future, we will extend this work to study the

cloning characteristics of scripting languages and

other technologies involved in developing web

applications, in addition to base languages. Study

can further be extended to analyze some open

source projects that are being used and maintained

professionally, instead of considering academia

level projects. Moreover, we will work on the

refactoring aspects in more detail.

Threats for validity:

Some of the threats to validity of the study

are:

• All of the projects considered for study are

based on the same domain, i.e., social

networking web applications.

• There is just one project in Java language. So,

it is hard to generalize the results of our study

conclusions for Java.

• Server side scripting languages, including JSP,

ASP.Net, HTML, and Java script are not

considered in our study.

References

[1] Roy, C. K., & Cordy, J. R. (2010). Near-

miss Function Clones in Open Source

Software: An Empirical Study. Journal of

Software Maintenance and

EvolutionResearch and Practice - Working

Conference on Reverse Engineering, , 22(3),

165-189.

[2] Rajapakse, D. C., & Jarzabek, S. (2005). An

Investigation of Cloning in Web

Applications. Int. Conf. on Web

Engineering, Syndney, 924-925.

[3] Roy, C. K., & Cordy, J. R. (2010). Are

Scripting Languages Really

Different?. Proc. IWSC 2010, ICSE 4th

International Workshop on Software

Clones,Cape Town, South Africa, 17-24.

http://research.cs.queensu.ca/~cordy/Papers/RC_IWSC10_Scripting.pdf
http://research.cs.queensu.ca/~cordy/Papers/RC_IWSC10_Scripting.pdf
http://research.cs.queensu.ca/~cordy/Papers/RC_IWSC10_Scripting.pdf

Pak. J. Engg. Appl. Sci. Vol. 22, Jan., 2018

12

[4] Al-Ekram, R., Kapser, C., & Godfrey, M.

(2005). Cloning by Accident: An Empirical

Study of Source Code Cloning Across

Software Systems. In ISESE, 2005. 376-

385.

[5] Kapser, C., & Michael, W. G. (2008).

“Cloning Considered Harmful” Considered

Harmful. Patterns of Cloning in Software,

Empirical Software Engineering. 13(6),

645-692.

[6] Yoshiki, H., Toshihiro, K., Shinji, K., &

Katsuro, I. (2004). Refactoring Support

Based on Code Clone Analysis.

PROFES’04, Kansai Science City, Japan,

April 2004.

[7] Basit, H. A., & Jarzabek, S. (2009). A Data

Mining Approach for Detecting Higher-

level Clones in Software. IEEE Transaction

on Software Engineering, 35(4), 497-514.

[8] Martin, F. (1999). Refactoring: Improving

the Design of Existing Code. Addison-

Wesely, 1999.

[9] Basit, H. A., & Jarzabek, S. (2005).

Detecting Higher-level Similarity Patterns

in Programs. In proceedingd 10th European

Software Engineering Conference and 13th

ACM SISOFT International Symposium on

the Foundations of Software Engineering,

ACM Press, , Lisbon, Portugal, Spetember

2005.

[10] Basit, H. A., Ali U., Haque S., & Jarzabek,

S. (2012). Things Structural Clones Tell that

Simple Clones Don’t. Int. Conference on

Software Maintenance, ICSM’2012, Trento,

Italy, September 2012, 275-28.

[11] Monzur, M. M., Arifur, R. M., & Salah, U.

A. (2012). A Literature Review of Code

Clone Analysis to Improve Software

Maintenance Process. CoRR, May, 2012.

[12] Monden, A., Nakae, D., Kamiya, T., &

Sato, S. (2002). Software quality analysis by

code clones in industrial legacy software.

Proceedings of the Eighth IEEE Symposium

on Software Metrics (METRICSí02),

Ontario, Canada, June 2002.

[13] Juergens, E., Deissenboeck, F., Hummel, B.,

& Wagner, S. (2009). Do code clones

matter?. Proceedings of 31stIEEE

International Conference on Software

Engineering, Washington, DC, USA, 485–

495.

[14] Lozano, A., & Wermelinger, M. (2008).

Assessing the effect of clones on

changeability. Proceedings of the 24th IEEE

International Conference on Software

Maintenance, Beijing, China, 2008, 227–

236.

[15] Rakibul, I., Rafiqul I., Maidul, I., &

Tasneem, H. (2011). A Study of Code

Cloning in Server Pages of Web

Applications Developed Using Classic

ASP.NET and ASP.NET MVC Framework.

Proceedings of 14th International

Conference on Computer and Infonnation

Technology (ICCIT 2011), Dhaka,

Bangladesh.

[16] Tariq, M., Minhaz, F. Z., Yosuke Y., &

Chanchal K. R. (2013). Near Miss Clone

Patterns in web Applications: An Empirical

Study with Industrial Systems. 26th Annual

IEEE Canadian Conference onElectrical and

Computer Engineering (CCECE),Regina,

SK, May, 2013, 1-6.

[17] Rhaman F., Christian, B., & Premkumar D.

(2010). Clones: What is that Smell. Proc.

IEEE Working Conf. on Mining Software

Repositories, 2010, 72-81.

[18] Basit, H. A., Puglisi, S., Smyth, W., Turpin,

A., & Jarzabek, S. (2007). Efficient token

based clone detection with flexible

tokenization. In Proceedings of the

European Software Engineering Conference

and ACM SIGSOFT Symposium on the

Foundations of Software Engineering

(ESEC-FSE), September 2007, 513-516.

[19] Basit, H. A., & Jarzabek, S. (2009). A data

mining approach for detecting higher-level

clones in software. IEEE Transactions on

Software Engineering, 35(4), 497-514.

[20] Bellon, S., Axivion, G. S., Koschke,

R., Antoniol, G., & Krinke, J. (2007).

Comparison and evaluation of clone

detection techniques. IEEE Transactions on

Software Engineering, 33(9), 577 – 591.

[21] Chanchal K. R., James R. C., & Rainer K.

(2009). Copmarison and evaluation of clone

detection tools and techniques: a qualitative

approach. Science of Computer

Programming Journal, 74(7), 470-495.

[22] Mondal, M., Roy, C. K., & Schneider, K. A.

(2015). A Comparative Study on the Bug-

Proneness of Different Types of Code
Clones. IEEE International Conference on

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Monden,%20A..QT.&searchWithin=p_Author_Ids:37325963000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Nakae,%20D..QT.&searchWithin=p_Author_Ids:37325959400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kamiya,%20T..QT.&searchWithin=p_Author_Ids:37306321500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sato,%20S..QT.&searchWithin=p_Author_Ids:37333590400&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6547899
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6547899
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6547899
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6547899
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bellon,%20S..QT.&searchWithin=p_Author_Ids:37925913500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koschke,%20R..QT.&searchWithin=p_Author_Ids:38262699700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koschke,%20R..QT.&searchWithin=p_Author_Ids:38262699700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Antoniol,%20G..QT.&searchWithin=p_Author_Ids:37271337500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Krinke,%20J..QT.&searchWithin=p_Author_Ids:37265159500&newsearch=true

Cloning in Popular Server Side Technologies using Agile Development: An Empirical Study

13

Software Maintenance and Evolution

(ICSME), Bremen, Germany, 91-100.

[23] Koschke, R., & Bazrafshan, S. (2016).

Software-Clone Rates in Open-Source

Programs Written in C or C++. IEEE

International Conference on Software

Analysis, Evolution, and Reengineering

(SANER), Suita, Japan, 2016.

[24] Manishankar, M., Chanchal, K. R., &

Kevin, A. S. (2017). Does cloned code

increase maintenance effort?. IEEE 11th

International Workshop on Software Clones

(IWSC), Klagenfurt, Austria, 21-21 Feb.

2017.

[25] Yusuke, Y., Yoshiki, H., & Shinji, K.

(2017). A technique to detect multi-grained

code clones. IEEE 11th International

Workshop on Software Clones (IWSC),

Klagenfurt, Austria, 21-21 Feb. 2017.

[26] Rattan, D., Bhatia, R., & Singh, M. (2013).

Software clone detection: A systematic

review. Information and Software

Technology, 55(7), 1165-1199.

[27] Roy, C., Zibran, M., & Koschke, R. (2014).

The vision of software clone management:

Past present and future (keynote paper).

2014 Software Evolution Week - IEEE

Conference on Software Maintenance,

Reengineering, and Reverse Engineering,

18-33.

[28] Svajlenko, J., & Roy, C. K. (2015).

Evaluating clone detection tools with

bigclonebench. Proceedings of the 2015

IEEE International Conference on Software

Maintenance and Evolution ICSME ‘15.

[29] Svajlenko, J., & Roy, C. K. (2014).

Evaluating modern clone detection tools.

Proceedings of the 2014 IEEE International

Conference on Software Maintenance and

Evolution ICSME.

[30] Tsantalis, N., Mazinanian, D., & Krishnan,

G. P. (2015). Assessing the refactorability

of software clones. IEEE Transactions on

Software Engineering, 41(11),1055–1090.

