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Abstract 

 

 

 

Different results regarding different integro-differential equations, most of the time are not 

properly generalized, because of not satisfying some of the constraints. The field of fuzzy 

integrodifferential is very rich now a day because of its different applications and in the use of 

different physical phenomenon’s. Solutions of FID are more generalized and have better 

applications. SDM is used for finding the solution of some linear and nonlinear FIDE. This method 

is easy to apply as well as it will give us more better results than other methods.  
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Introduction 

A considerable lot of linear and nonlinear equations are a fundamental part in connected 

science and building fields. Nonlinear equations are seen in an alternate kind of physical 

problems, for example, liquid elements, plasma material science, strong mechanics, quantum 

field hypothesis, proliferation of shallow water waves, and numerous different models are 

controlled inside its area of legitimacy by incomplete differential equations. The wide 

utilization of these equations is the most imperative motivation behind why they have drawn 

mathematician's consideration. Regardless of this, they are difficult to discover an answer, 

either numerically or theoretically. Previously, dynamic examination endeavors were given a 

lot of regard for the investigation of getting exact or approximate solutions of this sort of 

equations. [1,2] 

In the recent years the area of FIDEs has been developed a lot and have a key role in 

engineering. The elementary impression and arithmetic’s of fuzzy sets were first introduced by 

L. A. Zadeh. Later, that the area of fuzzy derivative and fuzzy integration was studied, and 

some general results were developed. Fuzzy differential equations, FIE and FIDEs have much 

importance in the study of fuzzy theory and have much beneficial results for different problems. 

Modelling of different physical system under the differential way will give us different FIDEs 

[2,3] Also, FIDEs in fuzzy setting are a natural way to model ambiguity of dynamical systems. 

Consequently, different fields of sciences like Physics, Geographic, Medical and Biological 

Science pay much importance to the solution of different FIDEs. Solution of these equations 

can minimize different engineering problems. In Seikkala defined fuzzy derivatives while 

concept of integration of fuzzy functions was first introduced by Dubois and Prade. Alternative 

Analytic solution of FIDEs (nonlinear) type are often difficult to find. So, most of the time 

approximate solution is required. There are also useful numerical schemes that can produce a 

numerical approximation to solutions for some problems [6,7] 

The literature on numerical solutions of IDE is large. We will use sumudu decomposition 

method for solving linear and nonlinear FIE. The method gives more realistic series solutions 

that converge very rapidly in physical problems. Sumudu Transform is also used for solving 

IDE which can be seen in [4,5]. IDE are transforms to FIDEs which are more general and gives 



better results. After applying Sumudu transform decomposition method is used for approximate 

solution. [8,9,10] 
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Chapter NO 1 

Basic Definitions Related to Fuzzy Integro-Differential 

Equations  

Preliminaries  

1.1 Integral Equation(IE): 

   

The unknown function Υ(𝜉) shows up under an integral symbol is known as integral equation. 

Usually we write an integral equation as follows [11]. 

                                                  𝛶(𝜉) = 𝑓(𝜉) + ∫ 𝐾(𝜉, 𝑡)𝛶(𝑡)𝑑𝑡

ℎ(𝜉)

𝑔(𝜉)

                                             (1.1) 

In the above Eq. (1.1) 𝑘(𝜉, 𝑡) and 𝜆 are the kernel and constant parameter respectively. Kernel is 

identified as function of dual variables 𝜉 and 𝑡.  𝑔(𝜉) and ℎ(𝜉) are recognized as the limitations 

for integration. The function 𝛶(𝜉) that will be resolved shows up under integral symbol, it has a 

property that it will be looked in both the outside of integral symbol as well as inside the integral 

symbol. The functions that will be specified in progressive are 𝑓(𝜉) and 𝑘(𝜉, 𝑡).  Limitations of 

integration can adopt both forms that is the variable, constant, or blended. 

 

1.1.1 Types of IE. 

 

IE show up in numerous kinds. Different sorts be contingent generally for the limitations of 

integration as well as the kernel of equality. In this content we will be worried on the accompanying 

sorts of IE. [11] 

i. Fredholm IE 

ii. Volterra IE 

iii. Volterra-Fredholm IE 

iv. Singular IE 

 

1.1.2 Fredholm integral equation(FIE): 
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An equation in which the limitations for integration are constant or static as well as the unidentified 

function 𝛶(𝜉) may show up just inside the integral sign is named FIE.  

                                                            𝑓(𝜉) = ∫𝐾(𝜉, 𝑡)𝛶(𝑡)𝑑𝑡

𝑏

𝑎

                                                      (1.2) 

Eq. (1.2) is named as first kind of the FIE. For the second kind of FIE, the unidentified function 

𝛶(𝜉) looks in external side as well as internal side of the integral symbol, this will be explained 

well by the succeeding equation. 

                                                       𝛶(𝜉) = 𝑓(𝜉) + 𝜆∫𝐾(𝜉, 𝑡)𝛶(𝑡)𝑑𝑡

𝑏

𝑎

                                          (1.3) 

For instance, 

𝑠𝑖𝑛𝜉 − 𝜉𝑐𝑜𝑠𝜉

𝜉2
= ∫sin(𝜉𝑡) 𝛶(𝑡)𝑑𝑡

1

0

 

As well as, 

𝛶(𝜉) = (𝜉 + 3) +
1

2
∫(𝜉 − 𝑡)𝛶(𝑡)𝑑𝑡

1

−1

 

Correspondingly. 

 

1.1.3 Volterra Integral Equations(VIE) 

 

There is a restriction for the VIE that at least single limit should be a variable. Likewise, FIE there 

are two varieties of VIE, that would be easier to described through,  

                                                                  𝑓(𝜉) = ∫𝐾(𝜉, 𝑡)𝛶(𝑡)𝑑𝑡                

𝜉

0

                                 (1.4) 

Equality (1.4) is a VIE of 1st kind.  

That is, 

𝜉𝑒−𝜉 = ∫𝑒𝑡−𝜉𝛶(𝑡)𝑑𝑡

𝜉

0
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                                                             𝛶(𝜉) = 𝑓(𝜉) + 𝜆∫𝐾(𝜉, 𝑡)𝛶(𝑡)𝑑𝑡

𝜉

0

                                    (1.5) 

Equality (1.5) is VIE of 2nd type, 

For illustration, 

𝛶(𝜉) = 1 − ∫𝛶(𝑡)𝑑𝑡

𝜉

0

 , 

 

1.1.4 Volterra-Fredholm Integral Equations 

 

The VFIE stand up by different boundary value problems, like parabolic with the interaction with 

mathematical modelling for the spatiotemporal progress of a widespread, and after several physical 

and biological models. The VFIE equations seem in the works in two arrangements, namely 

                                        𝛶(𝜉) = 𝑓(𝜉) + 𝜆1∫𝐾1(𝜉, 𝑡)𝛶(𝑡)𝑑𝑡

𝜉

0

+ 𝜆2∫𝐾2(𝜉, 𝑡)𝛶(𝑡)𝑑𝑡

𝜉

0

         (1.6)  

And, 

𝛶(𝜉, 𝑡) = 𝑓(𝜉, 𝑡) + 𝜆∫∫𝐹(𝜉, 𝑡, 𝜂, 𝜏, 𝛶(

 

Ω

𝑡

0

𝜂, 𝜏))𝑑𝜂𝑑𝜏, (𝜉, 𝑡)𝜖Ω × [0, T]       

Where 𝑓(𝜉, 𝑡) and 𝐹(𝜉, 𝑡, 𝜂, 𝜏, 𝛶(𝜂, 𝜏))𝑑𝜂𝑑𝜏 represents analytic functions on 𝐷 = Ω × [0, T] and 

Ω representing closed subset of 𝑅𝑛, 𝑛 = 1,2,3… it is intriguing to take note of that (1.4) holds 

separate VIE and FIE, while (1.6) comprises mixed VIE and FIE. Additionally, the unknown 

functions 𝛶(𝜉) and 𝛶(𝜉, 𝑡) appears inner and outer the integral symbols. This is a trademark 

highlight of a second kind integral equation. On the off chance that the obscure function seems 

just inside the integral signs, the subsequent equations are of 1st type, be that as it may, won't be 

analyzed in this content. Examples for the both types are given below. 

                                                 𝛶(𝜉) = 2𝜉 + 4𝜉2 + 2 −∫𝜉𝑢(𝑡)𝑑𝑡 − ∫ 𝑡𝛶(𝑡)𝑑𝑡

1

0

𝜉

0

                    (1.7)  

                                              𝛶(𝜉, 𝑡) = 𝜉 + 𝑡3 +
1

5
𝑡2 −

1

4
𝑡 −∫∫(𝜏 − 𝜂)𝑑𝜂𝑑

1

0

𝑡

0

𝜏                       (1.8) 
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1.1.5 Singular Integral Equations: 

 

An integral equation in which core converts into an infinite form at individual or both limit points 

is termed as singular integral equation. 

In another way if at least one of the two limit points are infinite then the IE is also named as 

singular IE. For illustration,  

                                                        𝛶(𝜉) = 𝑓(𝜉) + 𝜆 ∫ 𝑒−|𝜉−𝑡|𝛶(𝑡)𝑑𝑡

∞

−∞

                                       (1.9) 

As well as  

                                          𝑓(𝜉) = ∫
1

(𝜉 − 𝑡)𝛼

𝜉

0

𝛶(𝑡)𝑑𝑡,            0 < 𝛼 < 1                                    (1.10) 

 

1.1.6 Homogeneous and nonhomogeneous integral equation: 

 

A 2nd order VIE or FIE is termed as homogeneous IE if 𝑓(𝜉) is similar as zero. Else it is named as 

inhomogeneous. It should be noted that this stuff is only for the 2nd type of equations. 

For the clarification of this idea we have the equation as, 

                                                            𝛶(𝜉) = 𝑐𝑜𝑠𝜉 + ∫𝜉𝑡𝑢(𝑡)𝑑𝑡  

𝜉

0

                                             (1.11) 

                                                            𝛶(𝜉) = ∫(1 + 𝜉 − 𝑡)𝛶5(𝑡)𝑑𝑡 

𝜉

0

                                         (1.12) 

Equation no (1.11) is nonhomogeneous and equation no (1.12) is homogeneous. Because in (1.10) 

𝑓(𝜉) = 𝑐𝑜𝑠𝜉 and in (1.11) 𝑓(𝜉) = 0 

 

1.1.7 Linear and nonlinear Integral equations: 

 

An IE is called linear if the power of the unidentified function 𝛶(𝜉) is one inside the integral 

symbol. If the power of unspecified function is other than one, or if the equality possesses the 
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nonlinear terms for example, 𝑒𝑢, 𝑆𝑖𝑛ℎ𝑢, 𝐶𝑜𝑠𝑢, ln(1 + 𝑢) at that moment the IE is known as 

nonlinear. For the explanation of that idea we have the consideration as,  

                                                                𝛶(𝜉) = 2 − ∫(𝜉 − 𝑡)Υ(𝑡)𝑑𝑡 

𝜉

0

                                       (1.13) 

                                                         𝛶(𝜉) = 3 −∫(1 + 𝜉 − 𝑡)Υ5(𝑡)𝑑𝑡 

1

0

                                    (1.14) 

Equation (1.13) is linear while the equation (1.14) is nonlinear. 

 

1.2 Classification of Integro-differential Equations: 

 

Various kinds of dynamical physical problems possess Integro-differential equations, specifically 

during the conversion of IVP’s and BVP’s. Differential operators as well as integral operators are 

involved in an Integro-differential equation. There could be any order for the presence of 

derivatives of the unknown function. In characterizing integro-differential equations, we will 

pursue a similar class utilized previously.  

i. Fredholm Integrodifferential Equations 

ii. Volterra Integrodifferential Equations 

iii. Volterra-Fredholm Integrodifferential Equations 

 

1.2.1 Fredholm Integrodifferential Equations: 

 

Appearance of the Fredholm integro-differential equalities happen during the conversion of 

differential equation into integral equation. According to the definition of integro-differential 

equation of Fredholm kind presence of the unidentified function and its derivatives arise inside as 

well as outside the integral operator respectively. For FIE the limitations of integration are static 

that is constant. Presence of the differential as well as integral operatives make the equation a 

special kind of equation named integro-differential equation. To attain a particular solution the 

limits of integration should be available in FIDE. We have a FIDE as, 

                                                                      𝛶𝑛(𝜉) = 𝑓(𝜉) + 𝜆∫𝐾(𝜉, 𝑡)𝛶𝑑𝑡

𝑏

𝑎

                           (1.15)  
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Where 𝛶𝑛(𝜉) shows the 𝑛𝑡ℎ  order derivative of 𝛶(𝜉). On the left half of the equation the 

derivatives of less order will appear with 𝛶𝑛(𝜉). For example, 

                                                        𝛶′(𝜉) = 1 −
1

4
𝜉 + ∫𝜉𝑢(𝑡)𝑑𝑡

1

0

,      𝛶(0) = 0,                     (1.16) 

                 

1.2.2 Volterra Integrodifferential Equation 

 

Appearance of the Volterra integrodifferential equations happen during the conversion of IVP’s 

into integral equation. According to the definition of integro-differential equation of Volterra kind 

presence of the unidentified function and its derivatives arise inside as well as outside the integral 

operator respectively. For VIE at minimum one of the limitations of integration are is variable. 

Presence of the differential as well as integral operatives make the equation a special kind of 

equation named integro-differential equation. To attain a solution the IC’s of should be available 

in VIDE. We have a VIDE as, 

                                                                𝛶𝑛(𝜉) = 𝑓(𝜉) + 𝜆∫𝐾(𝜉, 𝑡)𝛶(𝑡)𝑑𝑡

𝜉

0

                            (1.17) 

where 𝛶𝑛 designates the derivative of order nth of 𝛶(𝜉). Different derivatives of fewer order may 

show up by 𝛶𝑛 at the left side. VIDE are specified as 

                                                       𝛶′(𝜉) = 3 +
1

4
𝜉2 − 𝜉𝑒𝜉 −∫𝑡𝛶(𝑡)𝑑𝑡

𝜉

0

,      𝛶(0) = 0,        (1.18) 

 

1.2.3 Volterra-Fredholm Integrodifferential Equations(VFIE) 

 

The VFIE emerge in indistinguishable way from Volterra-Fredholm integral equalities with at least 

one of conventional derivatives notwithstanding the integral operatives. The Volterra-Fredholm 

integrodiff erential equalities show up in the writing in two structures, to be specific 

,                              𝛶𝑛(𝜉) = 𝑓(𝜉) + 𝜆1∫𝐾1(𝜉, 𝑡)𝛶(𝑡)𝑑𝑡

𝜉

0

+ 𝜆2∫𝐾2(𝜉, 𝑡)𝛶(𝑡)𝑑𝑡

𝜉

0

               (1.19) 

And, 
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                                  𝛶𝑛(𝜉, 𝑡) = 𝑓(𝜉, 𝑡) + 𝜆∫∫𝐹(𝜉, 𝑡, 𝜂, 𝜏, 𝑢(

 

Ω

𝑡

0

𝜂, 𝜏))𝑑𝜂𝑑𝜏, (𝜂, 𝑡)𝜖Ω × [0, T] 

                 (1.20) 

Where 𝑓(𝜉, 𝑡) and 𝐹(𝜉, 𝑡, 𝜂, 𝜏, 𝑢(𝜂, 𝜏))𝑑𝜂𝑑𝜏 are investigative functions on 𝐷 = Ω × [0, T] and  

Ω is a locked subset of 𝑅𝑛, 𝑛 = 1,2,3…. ,2,3. It will be fascinating to take memo of that (1.19) 

covers split VIE and FI equalities, though (1.20) contains blended integrals. Different derivatives 

of less request may show up too. In addition, the unfamiliar functions 𝛶(𝜉) and 𝛶(𝜉, 𝑡) shows up 

inner and outer side of the integral cyphers. This is a trademark highlight of a 2nd kind integral 

equality. On the off chance that the obscure functions seem just inner side the integral symbols, 

the subsequent equations are of 1st type.  Preliminary conditions must be assumed to govern the 

results. IC’s ought to be specified to decide the specific arrangement. Instances of the two kinds 

are specified as 

𝛶′(𝜉) = 2𝜉 + 3 − ∫𝜉𝛶(𝑡)𝑑𝑡 − ∫𝑡𝛶(𝑡)𝑑𝑡,

1

0

𝜉

0

            𝛶(0) = 0  

 

1.2.4 Homogeneous and nonhomogeneous integro-differential equations: 

 

Classification of the 2nd type of integro-differential equations in homogeneous and 

inhomogeneous, if 𝑓(𝜉) in the 2nd type of Volterra or Fredholm IE’s is indistinguishably zero, the 

equality is named homogeneous. else it is baptized as inhomogeneous. It is to be notified that this 

possession grasps only for 2nd type. To elucidate this idea, we think about the accompanying 

conditions, 

                                                     𝛶(1)(𝜉) = 2 + 𝜉4 − 𝑒𝜉 +∫𝑡𝛶(𝑡)𝑑𝑡

𝜉

0

,      𝛶(0) = 0,            (1.21) 

                                                          𝛶(2)(𝜉) = ∫𝜉𝑡𝛶(𝑡)𝑑𝑡,       𝛶(0) = 1,

𝜉

0

  𝛶(1)(0) = 0       (1.22) 

Equation (1.21) is in homogeneous because 𝑓(𝜉) = 2 +
1

3
𝜉2 − 𝜉𝑒𝜉  and equation (1.22) is 

homogeneous because 𝑓(𝜉) = 0 

1.2.5 Linear and nonlinear Integro-differential equations 
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If the obscure function inside the integral symbol possess a power one, the integro-differential 

equation is called linear. On the off chance if the power of function 𝛶(𝜉) is greater from one, or if 

equation comprises nonlinear functions of 𝛶(𝜉)  for example, 𝑒𝑢, 𝑆𝑖𝑛ℎ𝑢, 𝐶𝑜𝑠𝑢, ln(1 + 𝑢)  the 

integro-differential equality is called nonlinear. To clarify this idea, we think about the conditions, 

                                                      𝛶′(𝜉) = 1 + ∫𝜉𝑡𝑒𝑡𝛶(𝑡)𝑑𝑡,       𝛶(0) = 1,

1

0

                           (1.23) 

                                                𝛶′(𝜉) = −1 +
1

6
𝜉2 − 𝜉𝑒𝜉 +∫𝑡𝛶(𝑡)𝑑𝑡

𝜉

0

,      𝛶(0) = 0,           (1.24) 

Equation (1.23) is nonlinear because of nonlinear part under integral sign 𝑒𝑡. While (1.24) is linear 

because it contains linear part under integral. 

 

1.3 Different method for solving integro-differential equations: 

 

There are different methods for solving integro-differential equations. We will discuss some of 

methods which are often used for getting the solutions for integro-differential equations. [30] 

i. Variational iteration technique(VIM) 

ii. Series solution method 

iii. Decomposition Method 

 

1.3.1 Variational iteration method 

 

The VIM was utilized to deal with Volterra fundamental conditions by changing over it to an IVP’s 

or by changing over it to an equal integrodiff erential condition. The technique gives quickly 

concurrent progressive estimates of the correct arrangement if such a shut frame arrangement 

happens, and not segments as in (ADM).). The VIM grips linear as well as nonlinear issues in a 

similar way with no compelling reason to specific confinements, for example, the alleged Adomian 

polynomials that we requirement for issues which are not linear. The frame of 𝑛𝑡ℎ order integro-

differential equality is,  

                                                                  𝛶𝑛(𝜉) = 𝑓(𝜉) + 𝜆∫𝐾(𝜉, 𝑡)𝛶(𝑡)𝑑𝑡

𝜉

0

                          (1.25) 
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Where 𝛶𝑛(𝜉) =
𝑑𝑛𝛶

𝑑𝜉𝑛
 and 𝛶(0),

𝑑 𝛶

𝑑𝜉 
(0),

𝑑2𝛶

𝑑𝜉2
(0), …………

𝑑𝑛−1𝛶

𝑑𝜉𝑛−1
(0) are initial conditions. 

The integro-differential equality (1.25) as correctional functional is  

             𝛶𝑘+1(𝜉) = 𝛶𝑘(𝜉) + ∫𝜆(𝜂)(𝛶𝑘
(𝑛)(𝜂) − 𝑓(𝜂) − ∫𝐾(𝜂, 𝑟)�̃�𝑘(𝑟)𝑑𝑟)𝑑𝜂 

𝜂

0

𝜉

0

                  (1.26) 

The VIM is utilized by putting on two fundamental advances. firstly it is required to decide the 

Lagrange multiplier λ which can be recognized ideally by means of integration by portions and by 

utilizing a inadequate diversity. Taking λ decided, an iterative formulation, without confined 

diversity, ought to be utilized for the assurance of the progressive approximation 𝛶𝑘+1(𝜉), 𝑘 ≥ 0 

of the arrangement 𝛶(𝜉).  The zeroth guess 𝛶0(𝜉) can be any specific function. Be that as it may, 

the initial standards 𝛶(0), 𝛶′(0), … are lean toward capably utilized for the particular zeroth 

estimation 𝛶0(𝜉) as will be perceived later. Subsequently, the solution is specified as, 

 

𝛶(𝜉) =  lim
𝑘→∞

𝛶𝑘 (𝜉) 

It is helpful to shrink the Lagrange multipliers 

 

𝛶(1) + 𝑓 (𝛶(𝜂), 𝛶(1)(𝜂)) = 0, 𝜆 = −1, 

𝛶(2) + 𝑓 (𝛶(𝜂), 𝛶(1)(𝜂), 𝛶(2)(𝜂)) = 0, 𝜆 = −1 = 𝜂 − 𝜉 

𝛶(3) + 𝑓 (𝛶(𝜂), 𝛶(1)(𝜂), 𝛶(2)(𝜂), 𝛶(3)(𝜂)) = 0, 𝜆 = −1 = −
1

2!
(𝜂 − 𝜉)2 

𝛶(2) + 𝑓 ((𝛶(𝜂), 𝛶(1)(𝜂), 𝛶(2)(𝜂)) , ………𝛶𝑛(𝜂)) = 0 

𝜆 = (−1)𝑛
1

(𝑛 − 1)!
(𝜂 − 𝜉)𝑛−1 

 

Variational iteration method 

(for FIDE’s) 

 

The technique gives quickly united progressive approximations of the correct arrangement if such 

a shut shape arrangement exists, and not parts as in ADM. The VIM handles linear as well as 
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nonlinear issues in a similar way with no compelling reason to specific limitations, for example, 

the supposed Adomian polynomials which are required for issues which are not linear. The frame 

of usual nth order integrodifferential equation is,  

                                                    𝛶𝑛(𝜉) = 𝑓(𝜉) + 𝜆∫𝐾(𝜉, 𝑡)𝛶(𝑡)𝑑𝑡

𝑏

𝑎

                                        (1.27) 

The IC’s are as 𝛶𝑛(𝜉) =
𝑑𝑛𝛶

𝑑𝑥𝑛
 and 𝛶(0), 𝛶(1)(0)…………𝛶𝑛−1(0)  

The integrodifferential equation (1.27) as correction functional is, 

              𝛶𝑘+1(𝜉) = 𝛶𝑘(𝜉) + ∫𝜆(𝜂)(𝛶𝑘
(𝑛)(𝜂) − 𝑓(𝜂) − ∫𝐾(𝜂, 𝑟)�̃�𝑘(𝑟)𝑑𝑟)𝑑𝜂 

𝑏

𝑎

𝜉

0

                 (1.28) 

The VIM is utilized by smearing both of fundamental advances. Firstly, we should need to decide 

the Lagrange multiplier λ which should be recognized ideally by means of integration and by 

utilizing a inadequate diversity. Taking λ decided, an iterative formulation, without confined 

diversity, ought to be utilized for the assurance of the progressive approximation 𝛶𝑘+1(𝜉), 𝑘 ≥ 0 

of the arrangement 𝛶(𝜉).  The zeroth guess 𝛶0(𝜉) can be any specific function. Be that as it may, 

the initial standards 𝛶(0), 𝛶′(0), … are lean toward capably utilized for the particular zeroth 

estimation 𝛶0(𝜉) as will be perceived later. Subsequently, the solution is specified as, 

 

𝛶(𝜉) =  lim
𝑘→∞

𝛶𝑘 (𝜉) 

 

1.3.2 Series solution method(SSM) 

(For Volterra integro-differential equation) 

 

We have another form in which we can define the function having analytical property “if a real 

function 𝛶(𝜉) possess derivatives for all orders same like the Taylor series at any point b at its 

domain 

                                                                  𝛶(𝜉) = ∑
Υ(𝑛)(𝑏)

𝑛!
(𝜉 − 𝑏)𝑛

∞

𝑛=0

                                      (1.29) 

About 𝑏 Eq. (1.29) shows convergence towards 𝛶(𝜉). For easiness, the nonexclusive type of 

Taylor solution at 𝜉 = 0 can be composed as 
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                                                                                𝛶(𝜉) = ∑𝑎𝑛𝜉
𝑛

∞

𝑛=0

                                              (1.30) 

In this area we will utilize the application of SSM for fathoming VIDE of the 2nd kind. We have 

the expectations that the solution 𝛶(𝜉) of the Voltera integro-differential equations is as, 

𝛶𝑛(𝜉) = 𝑓(𝜉) + 𝜆∫𝐾(𝜉, 𝑡)𝛶(𝑡)𝑑𝑡

𝜉

0

, 𝛶(𝑘)(0) = 𝑘! 𝑎𝑘,      0 ≤ 𝑘 ≤ (𝑛 − 1)             (1.31) 

is systematic, and accordingly has a Taylor arrangement of the frame agreed in (31), where the 

coefficients 𝑎𝑛 will be resolved intermittently. The first few coefficients 𝑎𝑘 can be controlled by 

utilizing the IC’s as, 

𝑎0 = 𝛶(0),               𝑎1 =
𝑑𝛶

𝑑𝜉

 

(0),               𝑎2 =
1

2!

𝑑2𝛶

𝑑𝜉2

 

(0),    𝑎3 =
1

3!

𝑑3𝛶

𝑑𝜉3
(0)  

etc. The lasting coefficients of 𝑎𝑘 (1.30) will be dictated by the application of SSM to the VIDE 

(1.31). Substitution of (30) into the two sides of (30) supply  

                                          (∑𝑎𝑘𝜉
𝑘

∞

𝑘=0

)

(𝑛)

= 𝑇(𝑓(𝜉)) + ∫𝐾(𝜉, 𝑡) (∑𝑎𝑘𝑡
𝑘

∞

𝑘=0

)

 

𝑑𝑡 

𝜉

0

              (1.32) 

For simplicity we use  

(𝑎0𝜉 + 𝑎1𝜉 + 𝑎2𝜉
2 +⋯)𝑛 =  𝑇(𝑓(𝜉)) + ∫𝐾(𝜉, 𝑡)(𝑎0𝑡 + 𝑎1𝑡 + 𝑎2𝑡

2 +⋯) 

𝜉

0

𝑑𝑡,         (1.33) 

Whereas for 𝑓(𝜉) the Taylor arrangement is 𝑇(𝑓(𝜉)). The integrodiff erential equality (1.31) will 

be changed over to a customary integral in (1.32) or (1.33) where as opposed to integration the 

obscure function 𝛶(𝜉), terms of the structure 𝑡𝑛, 𝑛 ≥ 0,will be incorporated. Notice that since we 

are seeking for a result in series system, at that point on the off chance that 𝑓(𝜉) incorporates basic 

functions, for example, exponential functions, trigonometric functions, and so forth. Taylor 

extensions ought to be utilized for functions engaged with 𝑓(𝜉).  

We first coordinate the side on the right of the integral symbol in (1.32) or (1.33) and gather the 

reflectance of alike exponents of 𝜉. Further we compare the reflectance of alike exponents of 𝜉 

into the both sides of the subsequent equality to decide a repeat connection in 𝑎𝑗,   𝑗 ≥ 0. 

Comprehending the repeat connection will prompt an entire resolve of the reflectance 𝑎𝑗,   𝑗 ≥ 0, 

where a portion of such reflectance will be utilized from the IC’s. Taking decided the reflectance 
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𝑎𝑗,   𝑗 ≥ 0 , the solution in the form of series pursues promptly after replacing the determined 

coefficients into (1.30). The solution in the form of exact might be gotten if such a solution in exact 

form exist. In the event that a solution in exact form isn't realistic, the got arrangement will utilized 

for mathematical determinations. For this situation, the supplementary relations we assess, the 

advanced precision level we accomplish. 

 

Series solution method (For Fredholm integro-differential equation) 

 

Utilization of the SSM has been castoff earlier, and the general procedure of Taylor series for 𝛶(𝜉) 

is as, 

                                                                              𝛶(𝜉) = ∑𝑎𝑛𝜉
𝑛

∞

𝑛=0

                                                (1.34) 

In this area we will utilize the application of SSM for fathoming FIDE of the 2nd kind. We have 

the expectations that the solution 𝛶(𝜉) of the FIDE is as, 

                  𝛶𝑘(𝜉) = 𝑓(𝜉) + 𝜆∫𝐾(𝜉, 𝑡)𝛶(𝑡)𝑑𝑡

𝑏

𝑎

, 𝛶(𝑗)(0) = 𝑎𝑗,      0 ≤ 𝑗 ≤ (𝑘 − 1)   (1.35) 

Is scientific, and in this manner has a Taylor arrangement of the structure given in (1.34), where 

the coefficients  𝑎𝑛 will be resolved intermittently. Substitution of (34) into the two sides of (1.35) 

gives 

                                     (∑𝑎𝑘𝜉
𝑛

∞

𝑛=0

)

(𝑘)

= 𝑇(𝑓(𝜉)) + ∫𝐾(𝜉, 𝑡) (∑𝑎𝑛𝑡
𝑛

∞

𝑛=0

)

 

𝑑𝑡

𝑏

𝑎

                    (1.36) 

For simplicity we use  

(𝑎0𝜉 + 𝑎1𝜉 + 𝑎2𝜉
2 +⋯)𝑘 =  𝑇(𝑓(𝜉)) + 𝜆∫𝐾(𝜉, 𝑡)(𝑎0𝑡 + 𝑎1𝑡 + 𝑎2𝑡

2 +⋯) 
𝑏

𝑎

𝑑𝑡, 

                                                                                                                                               (1.37) 

Whereas for 𝑓(𝜉) the Taylor arrangement is 𝑇(𝑓(𝜉)). The integrodiff erential equality (35) will be 

changed over to a customary integral in (1.36) or (1.37) where as opposed to integration the 

obscure function 𝛶(𝜉), terms of the structure 𝑡𝑛, 𝑛 ≥ 0,will be incorporated. Notice that since we 

are seeking for a result in series method, at that point on the off chance that 𝑓(𝜉) incorporates basic 
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functions, for example, exponential functions, trigonometric functions, and so forth. Taylor 

extensions ought to be utilized for functions engaged with 𝑓(𝜉).  

We first coordinate the side on the right of the integral symbol in (1.36) or (1.37) and gather the 

reflectance of alike exponents of 𝜉. Further we compare the reflectance of alike exponents of 𝑥 

into the both aspects of the subsequent equality to decide a repeat connection in 𝑎𝑗,   𝑗 ≥ 0. 

Comprehending the repeat connection will prompt an entire purpose of the reflectance 𝑎𝑗,   𝑗 ≥ 0  , 

where a portion of these coefficients will be utilized from the IC’s. Taking decided the coefficients 

𝑎𝑗,   𝑗 ≥ 0 , the solution in the form of series pursues promptly after replacing the determined 

coefficients into (1.35). The solution in the form of exact might be gotten if such a solution in exact 

form exist. In the event that a solution in exact form isn't realistic, the got arrangement have an 

option of utilizing for mathematical determinations. For this situation, the supplementary relations 

we assess, the advanced precision level we accomplish. 

FIDE gives solution in the exact frame if the arrangement 𝛶(𝜉) be in the form of polynomial. Be 

that as it may, if the arrangement is some other straightforward function, for example, 𝑠𝑖𝑛𝜉, 𝑒𝜉and 

so forth, the SSM stretches the solution in exact form to adjusting few of the coefficients 𝑎𝑗,𝑗 ≥ 0. 

 

1.3.3 Direct decomposition method 

(for Fredholm integro-differential equation) 

 

                                                     𝐾(𝜉, 𝑡) = 𝑔(𝜉)ℎ(𝑡)                                                                 (1.38) 

The standard form of the FIDE is as 

           𝛶𝑛(𝜉) = 𝑓(𝜉) + ∫𝐾(𝜉, 𝑡)𝛶(𝑡)𝑑𝑡

𝑏

𝑎

, 𝛶(𝑘)(0) = 𝑏𝑘,      0 ≤ 𝑘 ≤ (𝑛 − 1)           (1.39) 

Where 𝑢𝑛(𝜉)  specifies the 𝑛𝑡ℎ derivative of 𝛶(𝜉) with respect to 𝜉 and 𝑏𝑘 are the IC’s. 

Substitution of (1.38) into (1.39) bounces, 

𝛶𝑛(𝜉) = 𝑓(𝜉) + 𝑔(𝜉)∫𝐾(𝜉, 𝑡)ℎ(𝑡)𝑢(𝑡)𝑑𝑡

𝑏

𝑎

, 𝛶(𝑘)(0) = 𝑏𝑘,      0 ≤ 𝑘 ≤ (𝑛 − 1)     (1.40) 

We can without much of a stretch see that the definite integral in the IDE (1.39) includes an 

integrand that be contingent completely on t. So we can say that the definite basic at the R.H.S of 

(1.39) is identical to a consistent α. As such,  
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                                                                             𝛼 = ∫ℎ(𝑡)𝑢(𝑡)𝑑𝑡

𝑏

𝑎

                                              (1.41) 

Subsequently, Eq. (1.39) converts 

                                                                     𝛶𝑛(𝜉) = 𝑓(𝜉) + 𝛼𝑔(𝜉)                                              (1.42) 

Integration of opposite sides of (1.42) 𝑛 times from 0 to 𝜉, and utilizing the endorsed IC’s, we can 

find an articulation for 𝛶(𝜉) that includes the consistent 𝛼 notwithstanding the variable 𝜉. This 

implies we can compose 

                                                                            𝛶(𝜉) = 𝑣(𝜉; 𝛼)                                                     (1.43) 

Substitution of (1.42) into the R.H.S of (1.40), assessing the fundamental, and explaining the 

subsequent equality, we decide a mathematical incentive for the consistent 𝛼. This prompts the 

solution in exact form of 𝛶(𝜉) got after substitution of the subsequent estimation of α into (1.42). 

Recall that this technique drives dependably to the precise solution and not to the form of series 

parts. 

 

1.4 Theorems and Definitions interrelated to fuzzy perceptions 

1.4.1 Fuzzy number  

 

Any fuzzy number has an option of representation as a fuzzy subset in R. By defining a function 

𝛶: 𝑅 → [0,1] having a characteristic of being bound, convex and normal. Now taking a set E having 

the collection of all fuzzy numbers which have the property of continuity (upper semi) and 

compact. The 𝛼 level set [𝛶]𝜌 where 𝛶 is representing the collection of fuzzy numbers, 0 < 𝜌 ≤

1, describe as [𝛶]𝜌 = {𝑡 ∈ 𝑅, 𝛶(𝑡) ≥ 𝜌}. The convex property hold for U if 𝛶(𝑡) ≥

𝛶(𝑠)⋀𝛶(𝑟) = min(𝛶(𝑠), 𝛶(𝑟)) , 𝑤ℎ𝑒𝑟𝑒 𝑠 < 𝑡 < 𝑟. If ∃ 𝑡𝑜 ∈ 𝑅 such that 𝛶(𝑡𝑜) = 1, then U 

becomes normal. U is said to be continuous (upper semi) if for every 𝜀 > 0, 𝛶−1([0, 𝑎 + 𝜀)), ∀ 𝑎 ∈

[0,1] is open in the typical topology of R. 

Absolute value |𝛶| of 𝛶 ∈ 𝐸 is describe as 

|𝛶|(𝑡) = 𝑚𝑎𝑥{𝛶(𝑡), 𝛶(−𝑡)}, 𝑖𝑓 𝑡 ≥ 0 

= 0, 𝑖𝑓 𝑡 < 0 
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Now its obvious 𝜌- level set of U has a property of being close and bound interlude [𝛶(𝜌), 𝛶(𝜌)] 

as  𝛶(𝜌) represents the opposite-hand end point while 𝛶(𝜌) shows the rightward conclusion point 

for   [𝛶]𝜌 both of random fuzzy numbers 𝛶 = [𝛶(𝜌), 𝛶(𝜌)] and 𝑣 = [𝑉(𝜌), 𝑉(𝜌)] 

are same so 𝛶 = 𝑉 if and only if 𝛶(𝜌) = 𝑉(𝜌) and 𝛶(𝜌) = 𝑉(𝜌). every 𝑦 ∈ 𝑅 

canister be observed as a fuzzy number 𝑦 represent by 

𝑦(𝑡) = {
1       𝑖𝑓             𝑡 = 𝑦
0      𝑖𝑓               𝑡 ≠ 𝑦

} 

              𝑑: 𝐿(𝑅) × 𝐿(𝑅) → 𝑅 is a mapping showing the distance between fuzzy numbers and can 

be shown as 

𝑑(𝛶, 𝑉) = sup
0≤𝜌≤1

𝑚𝑎𝑥{|𝛶(𝜌) − 𝑉(𝜌)|, |𝛶(𝜌) − 𝑉(𝜌)|}   

Where  

                                   𝛶 = [𝛶(𝜌), 𝛶(𝜌)] and 𝑉 = [𝑉(𝜌), 𝑉(𝜌)] 

 So,𝑑 is a metric on 𝐿(𝑅) with the resulting belongings: 

1. 𝑑(𝛶 + 𝑤, 𝑉 + 𝑤) = 𝑑(𝛶, 𝑉) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛶, 𝑉, 𝑤 ∈ 𝐿(𝑅) 

2. 𝑑(𝑘𝛶, 𝑘𝑉) = |𝑘|𝑑(𝛶, 𝑉) for all 𝛶, 𝑉, ∈ 𝐿(𝑅) 

3. 𝑑(𝛶 + 𝑤,𝑤 + 𝑒) ≤ 𝑑(𝛶,𝑤) + 𝑑(𝑉, 𝑒)𝑓𝑜𝑟 𝑎𝑙𝑙 𝛶, 𝑉, 𝑤, 𝑒 ∈ 𝐿(𝑅) 

4. (𝑑, 𝐿(𝑅)) is a complete metric space. 

 

1.4.2 Definition: 

  

Consider 𝑓: 𝑅 → 𝐿(𝑅) as a fuzzy valued function 𝑓 is continuous for 𝑡𝑜 ∈ 𝑅 for each 𝜀 > 0 their 

exist 𝛿 > 0 such that 

𝑑((𝑓(𝑡), 𝑓(𝑡0)) < 𝜀 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 |𝑡 − 𝑡𝑜| < 𝛿 

 

1.4.3 Definition: 

 

consider 𝑓: 𝑅 → 𝐿(𝑅) as a fuzzy valued function and 𝜉𝑜 ∈ 𝑅 than 𝑓 is differentiable at 𝜉𝑜. If  ∃ 

𝑓′(𝜉𝑜) ∈ 𝐿(𝑅) such that 

(a) lim
ℎ→0+

𝑓(𝜉𝑜+ℎ)−𝑓(𝜉𝑜)

ℎ
= lim

ℎ→0+

𝑓(𝜉𝑜)−𝑓(𝜉𝑜−ℎ)

ℎ
= 𝑓(1)(𝜉𝑜) 
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(b) lim
ℎ→0−

𝑓(𝜉𝑜+ℎ)−𝑓(𝜉𝑜)

ℎ
= lim

ℎ→0−

𝑓(𝜉𝑜)−𝑓(𝜉𝑜−ℎ)

ℎ
= 𝑓(1)(𝜉𝑜) 

 

Theorem: 

 

consider 𝑓: 𝑅 → 𝐿(𝑅) as a fuzzy valued function and shows 𝑓(𝑡) = [𝑓(𝑡, 𝜌), 𝑓(𝑡, 𝜌)]for each 0 ≤

𝛼 ≤ 1 these are hold- [28] 

(a) If 𝑓 is differentiable  (a) in definition 1.7.2, then 𝑓(𝑡, 𝜌) and 𝑓(𝑡, 𝜌) are differentiable and 

𝑓(1)(𝑡) = [𝑓  
(1)(𝑡, 𝜌), 𝑓

(1)
(𝑡, 𝜌)] 

(b) Conditionally the differentiability of 𝑓 in (b) in definition 1.7.2, then𝑓(𝑡, 𝜌) and 𝑓(𝑡, 𝜌) are 

differentiable and 𝑓(1)(𝑡) = [𝑓
(1)
(𝑡, 𝜌), 𝑓(1)(𝑡, 𝜌)] 

 

Theorem: 

 

 𝑓: 𝑅 → 𝐿(𝑅) be the fuzzy valued function and represents 𝑓(𝑡) = [𝑓(𝑡, 𝜌), 𝑓(𝑡, 𝜌)]for each 0 ≤

𝜌 ≤ 1 followings are hold- 

(a) If 𝑓 and 𝑓(1)is have the property of differentiability in the 1st arrangement of (a) in  1.7.2 

or if 𝑓 and 𝑓(1) have property of differentiability in the 2nd arrangement of (b) in 1.7.2, then 

𝑓
(1)
(𝑡, 𝜌) 𝑎𝑛𝑑 𝑓(1)(𝑡, 𝜌) are differentiable 

                              𝑓(2)(𝑡) = [𝑓(2)(𝑡, 𝜌), 𝑓
(2)
(𝑡, 𝜌)]  

(b) If 𝑓 in (a) and 𝑓(1) in (b) has the characteristic of differentiability  in the 1st   and 2nd 

arrangement respectively  or If 𝑓 in (b) and 𝑓(1) in (a) has the characteristic of 

differentiability  in the 2nd and 1st  arrangement respectively in 1.7.2, then the 

𝑓
(1)
(𝑡, 𝜌) 𝑎𝑛𝑑 𝑓(1)(𝑡, 𝜌) are differentiable. 

 

 

Theorem: 
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A function 𝑓(𝜉) on [0,∞] having mapping on R and is represented by [𝑓(𝜉, 𝜌), 𝑓(𝜉, 𝜌)]for any 

fixed 𝑟 ∈ [0,1], suppose 𝑓(𝜉, 𝜌), 𝑓(𝜉, 𝜌) are Rimann-integrable on [𝑎, 𝑏], for each 𝑏 ≥ 𝑎 and 

lease their exist both the positive 𝑀(𝜌),𝑀(𝜌) such that  

  ∫ |𝑓(𝜉, 𝜌)| 𝑑𝜉 ≤ 𝑀(𝜌) 𝑎𝑛𝑑 ∫|𝑓(𝜉, 𝜌)|𝑑𝜉 ≤ 𝑀(𝜌) 

𝑏

𝑎

 

𝑏

𝑎

 

for every 𝑏 ≥ 𝑎. Then 𝑓(𝜉)  is improper fuzzy Rimannintegrable on [0,∞] and then the 𝑓(𝜉)   is 

a fuzzy number. Additionally, we can say 

∫ 𝑓(𝜉)𝑑𝜉 =

∞

𝑎

∫𝑓(𝜉, 𝜌)𝑑𝜉

𝑏

𝑎

, ∫ 𝑓(𝜉, 𝜌)𝑑𝜉

𝑏

𝑎

 

 

Proposition: 

 

 Consider 𝑓(𝜉) and 𝑔(𝜉)be a fuzzy on R and fuzzy Riemann-integrable on 𝐼 = [𝑎,∞),then 𝑓(𝜉) +

𝑔(𝜉) is Rimann-integrable on 𝐼 = [𝑎,∞) 

∫[(𝑓(𝜉) + 𝑔(𝜉)]𝑑𝜉 =

 

𝐼

∫𝑓(𝜉)𝑑𝜉 +

 

𝐼

∫𝑔(𝜉)𝑑𝜉

 

𝐼

 

Definition: 

 

  The FLT of a fuzzy  𝑓(𝑡) on R is defined as follows:    

𝑓(𝑠) = 𝐿{𝑓(𝑡)} = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 = lim
𝑇→∞

 ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡

𝑇

0

∞

0

 

The sign L is FLT, which turns on fuzzy real valued function 𝑓 = 𝑓(𝑡)and produces 𝑓(𝑠) =

𝐿{𝑓(𝑡). And the fuzzy Laplace transform for 𝑓(𝑡) can be as followed 

 

𝑓(𝑠, 𝜌) = 𝐿{𝑓(𝑡, 𝜌)} = [𝑙{𝑓(𝑡, 𝜌}, 𝑙{𝑓{𝑡, 𝜌}] 

𝑙{𝑓(𝑡, 𝜌} = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 = lim
𝑇→∞

 ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡

𝑇

0

∞

0

 

                                                                                                                                    0 ≤ 𝜌 ≤ 1 
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𝑙{𝑓{𝑡, 𝜌} = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 = lim
𝑇→∞

 ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡

𝑇

0

∞

0

 

                                                                                                                                    0 ≤ 𝜌 ≤ 1 

Definition: 

 

Fuzzy Convolution Theorem:  

The convolution for both the 𝑓 𝑎𝑛𝑑 𝑔 which are fuzzy real value function defined for 𝑡 ≥ 0. 

(𝑓 ∗ 𝑔)(𝑡) = ∫𝑓(𝑇)𝑔(𝑡 − 𝑇)𝑑𝑇

𝑇

0

 

 

Theorem: 

 

Consider 𝑓 𝑎𝑛𝑑 𝑔 defined on 𝑅 are continuous (piecewise) on  [0,∞]  having exponential order p, 

then 

𝐿{(𝑓 ∗ 𝑔)(𝑡)} = 𝐿{𝑓(𝑡)}𝐿{𝑔(𝑡)} = 𝐹(𝑠). 𝐺(𝑠) 

 

1.5 Sumudu transform: 

 

Quite a while prior, differential equations warred a vital part in all parts of connected science and 

designing fields. In spite of this, they are difficult to discover an answer, either numerically or 

hypothetically for these equations. So as to grow new systems, help in getting careful and surmised 

arrangements of these equations is as yet a major issue need new techniques.  

Watugula presented another vital change and called it as Sumudu transform. Which is 

characterized as: 

Watugula presented another vital change and called it as Sumudu transform. Which is 

characterized as:𝐹(𝑢) = 𝒮[𝑓(𝑡)] = ∫
1

𝑢
𝑒(−

𝑡

𝑢
)𝑓(𝑡)𝑑𝑡

∞

0
 

Watugula connected this changes to the arrangement of ordinary differential equations. In light of 

its valuable properties, the Sumudu transform helps in taking care of complex issues in connected 

sciences and designing arithmetic. Henceforward, is the meaning of the Sumudu transform and 

properties portraying the effortlessness of the transform. [12] 
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1.5.1 Definition of sumudu transform: 

 

The Sumudu transform of the function 𝑓(𝑡)is defined by: 

𝐹(𝑢) = 𝒮[𝑓(𝑡)] = ∫
1

𝑢
𝑒(−

𝑡
𝑢
)𝑓(𝑡)𝑑𝑡

∞

0

 

𝐹(𝑢) = 𝒮[𝑓(𝑡)] = ∫ 𝑓(𝑢𝑡)𝑒−𝑡𝑑𝑡

∞

0

 

For any function 𝑓(𝑡) and −𝜏1 < 𝑢 < 𝜏2 

 
Theorem 

 

If 𝑐1 ≥ 0, 𝑐2 ≥ 0 and 𝑐 ≥ 0 are any constant and 𝑓1(𝑡), 𝑓2(𝑡) and 𝑓 (𝑡) any functions having the 

Sumudu transform 𝐺1(𝑢), 𝐺2(𝑢) and 𝐺(𝑢) respectively then 

i. 𝒮[𝑐1𝑓1(𝑡) + 𝑐2𝑓2(𝑡)] = 𝑐1𝒮[𝑓1(𝑡)] + 𝑐2𝒮[𝑓2(𝑡)] = 𝑐1𝐺1(𝑢) + 𝑐2𝐺2(𝑢) 

ii. 𝒮[𝑓(𝑐𝑡)] = 𝐺(𝑐𝑢) 

iii. lim
𝑡→∞

𝑓(𝑡) = 𝑓(0) = lim
𝑢→0

𝐺(𝑢) 

Further are worded more, for several functions 𝑓(𝑡) defined for 𝑡 ≥ 0 in the 

neighbourhood of infinity. 

lim
𝑡→∞

𝑓(𝑡) = lim
𝑢→0

𝐺(𝑢) 

Theorem 

 

      If 𝒮[𝑓(𝑡)] = 𝐹(𝑢) and  

𝑔(𝑡) = {
𝑓(𝑡 − 𝜏),                   𝑡 ≥ 𝜏 
0                               𝑡 ≥ 𝜏    

 

Then,  

𝒮[𝑔(𝑡)] = 𝑒(−
𝑡
𝑢
)𝐺(𝑢) 

 

 

1.5.2 Some important formula for sumudu transform: [24] 
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𝑓(𝑡) 

 

 

             𝐺(𝑢) = 𝒮(𝑓(𝑡)) 

 

1 

 

2 

3 

 

4 

 

5 

 

6 

 

7 

8 

9 

 

10 

 

11 

 

 1 

 

 𝑡 

𝑡𝑛−1

(𝑛 − 1)!
, 𝑛 = 0,1,2,3… 

  
𝑡𝑛−1

Γ(𝑛)
, 𝑛 > 0 

 

                𝑒𝑎𝑡   

 

(𝑡𝑛−1)𝑒𝑎𝑡

(𝑛 − 1)!
, 𝑛 = 0,1,2,3… 

𝑠𝑖𝑛𝑎𝑡

𝑎
 

𝑐𝑜𝑠𝑎𝑡 

𝑒𝑏𝑡𝑠𝑖𝑛ℎ𝑎𝑡

𝑎
 

𝑒𝑏𝑡𝑐𝑜𝑠ℎ𝑡 

 

 
(𝑒𝑏𝑡−𝑒𝑎𝑡)

𝑏−𝑎
, 𝑎 ≠ 𝑏 

 

 

           1 

 

           𝑢 

          𝑢𝑛−1 

 

         𝑢𝑛−1 

 

                           
1

1−𝑎𝑢
 

 

 
𝑢𝑛−1

(1−𝑎𝑢)𝑛
 

       
𝑢

1+𝑎2𝑢2
 

  
1

1+𝑎2𝑢2
 

 
𝑢

(1−𝑏𝑢)2+𝑎2𝑢2
 

1 − 𝑏𝑢

((1 − 𝑏𝑢)2 + 𝑎2𝑢2)
 

 

   
𝑢

(1−𝑏𝑢) +(1−𝑎𝑢)
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12 

 

13 

 

14 

 

15 

 

16 

 

17 

 

18 

 

19 

 

20 

 

21 

 

22 

 

23 

 

 
(𝑏𝑒𝑏𝑡−𝑎𝑒𝑎𝑡)

𝑏−𝑎
, 𝑎 ≠ 𝑏 

𝑡𝑠𝑖𝑛𝑎𝑡

2𝑎
 

 

 𝑐𝑜𝑠𝑎𝑡 −
1

2
𝑎𝑡𝑠𝑖𝑛𝑎𝑡 

 

𝑡𝑐𝑜𝑠𝑎𝑡 

 

𝑠𝑖𝑛𝑎𝑡 − 𝑎𝑡𝑐𝑜𝑠𝑎𝑡

2𝑎3
 

𝑎𝑡𝑐𝑜𝑠ℎ𝑎𝑡 − 𝑠𝑖𝑛ℎ𝑎𝑡

2𝑎3
 

 

𝑡𝑠𝑖𝑛ℎ𝑎𝑡

2𝑎
 

𝑠𝑖𝑛ℎ𝑎𝑡 + 𝑡𝑐𝑜𝑠ℎ𝑎𝑡

2𝑎 
 

 

𝑡𝑐𝑜𝑠ℎ𝑎𝑡 

 

𝑡2𝑠𝑖𝑛𝑎𝑡

2𝑎
 

𝑡2𝑐𝑜𝑠𝑎𝑡

2
 

 

𝑡3𝑐𝑜𝑠𝑎𝑡

6
 

 

 
𝑢

(1−𝑏𝑢) +(1−𝑎𝑢)
 

𝑢2

(1 + 𝑎2𝑢2)2
 

 

 
1

(1+𝑎2𝑢2)2
 

𝑢((1 − 𝑎2𝑢2)

(1 + 𝑎2𝑢2)2
 

 

𝑢3

(1 + 𝑎2𝑢2)2
 

𝑢3

(1 + 𝑎2𝑢2)2
 

𝑢2

(1 + 𝑎2𝑢2)2
 

  
𝑢 

(1 − 𝑎2𝑢2)2
 

 

𝑢((1 + 𝑎2𝑢2)

(1 − 𝑎2𝑢2)2
 

  

𝑢3((3 − 𝑎2𝑢2)

(1 + 𝑎2𝑢2)3
 

 
𝑢2((1−3𝑎2𝑢2)

(1+𝑎2𝑢2)3
 

 

 
𝑢3((1−6𝑎2𝑢2+𝑎4𝑢4)

(1+𝑎2𝑢2)4
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24 

 

25 

 

26 

 

27 

28 

 

29 

 

30 

 

31 

 

32 

 

33 

 

34 

 

35 

 

36 

 

𝑡3𝑠𝑖𝑛𝑎𝑡

24𝑎
 

𝑎𝑡2𝑐𝑜𝑠ℎ𝑎𝑡 − 𝑡𝑠𝑖𝑛ℎ𝑎𝑡

8𝑎5
 

  

𝑡2𝑠𝑖𝑛ℎ𝑎𝑡

2𝑎
 

 𝑐𝑜𝑠𝑎𝑡𝑐𝑜𝑠ℎ𝑎𝑡 

 
1

2𝑎2
𝑠𝑖𝑛𝑎𝑡𝑠𝑖𝑛ℎ𝑎𝑡 

 

1

2𝑎 
(𝑠𝑖𝑛𝑎𝑡𝑐𝑜𝑠ℎ𝑎𝑡 + 𝑐𝑜𝑠𝑎𝑡𝑠𝑖𝑛ℎ𝑎𝑡) 

1

2𝑎3
(𝑠𝑖𝑛ℎ𝑎𝑡 − 𝑠𝑖𝑛𝑎𝑡) 

 

1

2𝑎2
(𝑐𝑜𝑠ℎ𝑎𝑡 − 𝑐𝑜𝑠𝑎𝑡) 

  
1

2𝑎 
(𝑠𝑖𝑛ℎ𝑎𝑡 − 𝑠𝑖𝑛𝑎𝑡) 

1

2𝑎 
(𝑐𝑜𝑠ℎ𝑎𝑡 + 𝑐𝑜𝑠𝑎𝑡) 

 

2(𝑐𝑜𝑠𝑎𝑡 − 𝑐𝑜𝑠𝑏𝑡)

𝑡
 

 
(𝑒−𝑏𝑡−𝑒−𝑎𝑡)

𝑡
 

 

𝑡2𝑐𝑜𝑠𝑎𝑡

2
 

 

 
𝑢4((1−𝑎2𝑢2)

(1+𝑎2𝑢2)4
 

 
𝑢4

(1−𝑎2𝑢2)3
 

  

𝑢3((3 + 𝑎2𝑢2)

(1 − 𝑎2𝑢2)3
 

1

1 + 4𝑎4𝑢4
 

𝑢2

1 + 4𝑎4𝑢4
 

𝑢 

1 + 4𝑎4𝑢4
 

𝑢3

1 − 𝑎4𝑢4
 

 

𝑢2

1 − 𝑎4𝑢4
 

 

𝑢 

1 − 𝑎4𝑢4
 

1 

1 − 𝑎4𝑢4
 

 

1

𝑢
𝑙𝑛
  (1 + 𝑎2𝑢2)

(1 + 𝑏2𝑢2)
 

1

𝑢
𝑙𝑛
  (1 + 𝑎 𝑢 )

(1 + 𝑏 𝑢 )
 

𝑢2((1 − 3𝑎2𝑢2)

(1 + 𝑎2𝑢2)3
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1.5.3 Fuzzy Sumudu transform: 

 

Taking 𝑓: 𝑅 → 𝑓(𝑅) as a continuous fuzzy valued function and undertake that 𝑓(𝑢𝜉)⨀𝑒−𝜉 as an 

improper fuzzy Riemann-integrable on [0,∞), then [15] 

∫ 𝑓(𝑢𝜉)⨀𝑒−𝜉𝑑𝜉

∞

0

 

is called FST and we can represent it as 

𝐹(𝑢) = 𝒮[𝑓(𝜉)] = ∫ 𝑓(𝑢𝜉)⨀𝑒−𝜉𝑑𝜉

∞

0

, 𝑢 ∈ [𝜏1, 𝜏2] 

= 𝒮[𝑓(𝜉)] = [𝒮 [𝑓𝛼(𝜉)] , 𝒮[𝑓𝛼(𝜉)]] 

Important theorems and properties: 

 

As  𝑓: 𝑅 → 𝑓(𝑅) is a continuous fuzzy valued function and if 𝐹(𝑢) = 𝒮[𝑓(𝜉)] then 

𝒮[𝑓(1)(𝜉)] =

{
 

 
𝐹(𝑢)

𝑢
−
𝑓(0)

𝑢
     𝑖𝑓 𝑓 𝑖𝑠 (𝑖)𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝑢 > 0

−
𝑓(0)

𝑢
−
(−𝐹(𝑢)) 

𝑢
𝑖𝑓 𝑓 𝑖𝑠 (𝑖𝑖)𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝑢 > 0

 

Proof: case (i) 

let f is differentiable then  

𝐹(𝑢)

𝑢
−
𝑓(0)

𝑢
= [

𝒮 [𝑓𝜌(𝜉)]

𝑢
−
𝑓𝜌(0)

𝑢
,
𝒮 [𝑓

𝜌
(𝑥)]

𝑢
−
𝑓
𝜌
(0)

𝑢
] 

= 𝒮 [[𝑓𝜌(𝜉)] 𝒮 [𝑓𝜌(𝜉)]] 

𝐹(𝑢)

𝑢
−
𝑓(0)

𝑢
= 𝒮[𝑓(1)(𝜉)] 

Proof: case (ii) 

let f is differentiable then  

−
𝑓(0)

𝑢
−
(−𝐹(𝑢))

𝑢
= [−

𝑓𝜌(0)

𝑢
+
𝒮 [𝑓𝜌(𝜉)]

𝑢
, −
𝑓
𝜌
(0)

𝑢
+ 
𝒮 [𝑓

𝜌
(𝜉)]

𝑢
] 

= 𝒮 [[𝑓𝜌(𝜉)] 𝒮 [𝑓𝜌(𝜉)]] 
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−
𝑓(0)

𝑢
−
(−𝐹(𝑢))

𝑢
= 𝒮[𝑓(1)(𝜉)] 

 

Theorem: 

 

Let 𝑓: 𝑅 → 𝑓(𝑅) is a continuous fuzzy valued function and if 𝐹(𝑢) = 𝒮[𝑓(𝑥)] then 

𝒮 (𝑒−𝑎𝜉⨀𝑓(𝑡)) =
1

1 + 𝑎𝑢
𝐹 (

𝑢

1 + 𝑎𝑢
) , 𝑎𝑢 ≠ −1  𝑎𝑛𝑑

1

1 + 𝑎𝑢
> 0 

Proof: 

𝒮 (𝑒−𝑎𝜉⨀𝑓(𝑡)) = [∫ 𝑓𝜌(𝑢𝜉)𝑒
−𝑎(𝜉𝑢)𝑒−𝜉𝑑𝜉,

∞

0

∫ 𝑓𝜌(𝑢𝜉)𝑒
−𝑎(𝜉𝑢)𝑒−𝜉𝑑𝜉 

∞

0

] 

= [∫ 𝑓𝜌(𝑢𝜉)𝑒
−𝑎(1+𝑢)𝜉𝑑𝜉,

∞

0

∫ 𝑓𝜌(𝜉)𝑒
−𝑎(1+𝑢)𝜉𝑑𝜉 

∞

0

] 

                               Now let   𝑣 = (1 + 𝑎𝑢)𝜉  𝑎𝑛𝑑  𝑑𝜉 =
𝑣

1+𝑎𝑢
 

So, the equation develops 

                            = [
1

1 + 𝑎𝑢
∫ 𝑓𝜌 (

𝑢𝑣

1 + 𝑎𝑢
) 𝑒−𝑣𝑑𝑣,

∞

0

1

1 + 𝑎𝑢
∫ 𝑓𝜌 (

𝑢𝑣

1 + 𝑎𝑢
) 𝑒−𝑣𝑑𝑣,

∞

0

] 

=
1

1 + 𝑎𝑢
∫ 𝑓𝛼 (

𝑢𝑣

1 + 𝑎𝑢
) 𝑒−𝑣𝑑𝑣,

∞

0

 

So, we have verified that  

𝒮 (𝑒−𝑎𝜉⨀𝑓(𝑡)) =
1

1 + 𝑎𝑢
𝐹 (

𝑢

1 − 𝑎𝑢
) 

Likewise, we can prove  

(𝑒𝑎𝜉⨀𝑓(𝑡)) =
1

1 − 𝑎𝑢
𝐹 (

𝑢

1 − 𝑎𝑢
) 

Theorem: 

 

consider 𝑓: 𝑅 → 𝑓(𝑅) is a continuous fuzzy valued function and if 𝐹(𝑢) = 𝒮[𝑓(𝜉)] then 

𝒮 [∫𝑓(𝜉)𝑑𝜉

𝜉

0

] = 𝑢𝐹(𝑢) 



25 
 

 
 

Proof: 

 

Assume function ℎ is differentiable, and  

ℎ𝜌(𝜉) = ∫𝑓𝜌(𝜉)𝑑𝜉

𝜉

0

, ℎ𝜌(𝜉) = ∫𝑓
𝜌
(𝜉)𝑑𝜉

𝜉

0

      ℎ𝜌(0) = 0 = ℎ𝜌(0) , ℎ(1)(𝜉) = 𝑓(𝜉) 

𝒮 (ℎ(1)(𝜉)) =
𝐻(𝑢)

𝑢
−
ℎ(𝑜)

𝑢
  = [

𝒮[ℎ𝜌(𝜉)]

𝑢
−
ℎ𝜌(0)

𝑢
,
𝒮[ℎ𝜌(𝜉)]

𝑢
−
ℎ𝜌(0)

𝑢
] 

                                                    = [
𝒮[ℎ𝜌(𝜉)]

𝑢
,
𝒮[ℎ𝜌(𝜉)]

𝑢
] 

                                          = [
1

𝑢
 𝒮 ∫𝑓𝜌(𝜉)𝑑𝜉

𝜉

0

,
1

𝑢
𝒮 ∫𝑓

𝜌
(𝜉)𝑑𝜉

𝜉

0

] 

So, proved 

                    𝒮 [∫𝑓(𝜉)𝑑𝜉

𝜉

0

] = 𝑢𝐹(𝑢) 
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Chapter No 2 

Solution of Fuzzy Integro-Differential Equation with the 

use of Fuzzy Laplace Transformation 

The concept of fuzzy sets and set operations was first introduced by Zadeh and subsequently 

several authors have studied various aspects of the theory and applications of fuzzy sets. 

Abbasbandy et. al introduced a numerical algorithm for solving linear Fredholm fuzzy integral 

equations of second kind by using parametric form of fuzzy number and converting a linear fuzzy 

Fredholm integral equations to two linear systems of integral equation of the second kind in crisp 

case Badolian et. al studied another numerical method for solving linear fuzzy Fredholm integral 

equation of second kind by using Adomian method. Moreover, Friedman et. al investigated an 

emending method to solve fuzzy Voltera and Fredholm integral equations. However, many other 

authors obtained the numerical integration of fuzzy valued functions and solving fuzzy Voltera 

and Fredholm equations. The concept of fuzzy Laplace Transformation was introduced by 

Allahviranloo, Ahmadi After many other researchers use it to solve fuzzy differential equations, 

fuzzy integral equations etc. Some authors discussed the solution of fuzzy integro-differential 

equation by fuzzy differential transform method in their research paper. [16,19,20] 

In this section we examine the strategy for explaining fuzzy integro-differential equations under 

certain condition by utilizing fuzzy Laplace transform. And will see the different results and their 

behavior at long last we will give some illustrative numerical examples. [17,18] 
 

 2.1 Main Construction:  

 

The general Volterra integro-differential equation is [7,13]  

                                                             𝛶𝑛(𝜉) = 𝑓(𝜉) − ∫𝑘(𝜉 − 𝑡)𝛶(𝑡)𝑑𝑡

𝜉

0

                                  (2.1) 

with 

                                                       𝛶𝑘(0) = 𝑎 = (𝑎𝑘 , 𝑎𝑘) ; 0 ≤ 𝑘 ≤ 𝑛 − 1 

the nth derivative of  𝛶 is denoted by 𝛶𝑛. 

By applying fuzzy Laplace transform on both sides of (2.1), 



27 
 

 
 

                                                 𝐿[𝛶𝑛(𝜉)] = 𝐿[𝑓(𝜉)] − 𝐿[∫𝑘(𝜉 − 𝑡)]𝛶(𝑡)𝑑𝑡

𝜉

0

                             (2.2) 

Use of FLT and some of its properties will give u 

𝑠𝑛𝐿(𝛶(𝜉)) − 𝑠𝑛−1𝛶(0) − 𝑠𝑛−2𝛶(1)(0)……… .−𝛶(𝑛−1)(0) =  𝐿[𝑓(𝜉)] − 𝐿[∫𝑘(𝜉 − 𝑡)]𝛶(𝑡)𝑑𝑡

𝜉

0

 

  𝑠𝑛𝐿 (𝛶(𝜉, 𝜌)) − 𝑠𝑛−1𝑎𝑜 − 𝑠
𝑛−2𝑎1……… .−𝑎𝑛−1(0) = 𝐿{𝑓(𝜉, 𝜌} + 𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)]  

  0 ≤ 𝜌 ≤ 1 

     (2.3) 

Where, 

                                                𝛶(0) = 𝑎𝑜 , 𝛶
′(0) = 𝑎1, … 𝛶

𝑛−1(0) = 𝑎𝑛−1                                    (2.4)                                                                      

  𝑠𝑛𝐿 (𝛶(𝜉, 𝜌)) − 𝑠𝑛−1𝑎𝑜 − 𝑠
𝑛−2𝑎1……… .−𝑎𝑛−1(0) = 𝐿{𝑓(𝜉, 𝜌} + 𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)]  

Where,  

 𝛶(0) = 𝑎𝑜 , 𝛶
′(0) = 𝑎1, … 𝛶

𝑛−1(0) = 𝑎𝑛−1(0) 

0 ≤ 𝜌 ≤ 1 

                                                                                                                                                (2.5) 

Now we discuss the following cases 

(i)  if 𝛶(𝜉; 𝜌) and 𝑘(𝜉; 𝜌) both are positive 

𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)] = 𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)] 

𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)] = 𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)] 

(ii) if 𝛶(𝜉; 𝜌) is negative and 𝑘(𝜉; 𝜌) is positive 

𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)] = 𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)] 

𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)] = 𝐿[𝑘(𝜉; 𝜌)] 𝐿[𝛶(𝜉; 𝜌)] 

(iii)  if 𝛶(𝜉; 𝜌) is positive and 𝑘(𝜉; 𝜌) is negative 

𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)] = 𝐿[𝑘(𝜉; 𝜌)] 𝐿[𝛶(𝜉; 𝜌)] 

𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)] = 𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)] 

(iv)  if 𝛶(𝜉; 𝜌) and 𝑘(𝜉; 𝜌) both are negative 

𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)] = 𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)] 

𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)] =  𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)] 
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We will explore the (i). All the other cases are same.[25] 

𝑠𝑛𝐿[𝛶(𝜉; 𝜌)] − 𝑠𝑛−1𝑎0 − 𝑠
𝑛−2𝑎1…… . 𝑎𝑛−1 = 𝐿 {𝑓(𝜉; 𝜌)} + 𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)] 

0 ≤ 𝜌 ≤ 1 

 (2.6) 

and, 

𝑠𝑛𝐿[𝛶(𝜉; 𝜌)] − 𝑠𝑛−1𝑎𝑜 − 𝑠
𝑛−2𝑎1…… .−𝑎𝑛−1 = 𝐿[𝑓(𝜉; 𝜌)] + 𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)] 

 (2.7) 

by simplification 

           𝑠𝑛𝐿[𝛶(𝜉; 𝜌)] − 𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)] = 𝐿 [𝑓(𝜉; 𝜌)] + 𝑠𝑛−1𝑎0 + 𝑠
𝑛−2𝑎1…… .+𝑎𝑛−1 

              𝑠𝑛𝐿[𝛶(𝜉; 𝜌)](1 − 𝐿[𝑘(𝜉; 𝜌)]) =  𝐿 [𝑓(𝜉; 𝜌)] + 𝑠𝑛−1𝑎0 + 𝑠
𝑛−2𝑎1…… .+𝑎𝑛−1 

                                                                                                                                                    (2.8) 

Similarly,                                                                                                                                                    

𝑠𝑛𝐿[𝛶(𝜉; 𝜌)] − 𝐿[𝑘(𝜉; 𝜌)]𝐿[𝛶(𝜉; 𝜌)] = 𝐿[𝑓(𝜉; 𝜌)] + 𝑠𝑛−1𝑎𝑜 + 𝑠
𝑛−2𝑎1…… .+𝑎𝑛−1 

𝑠𝑛𝐿[𝛶(𝜉; 𝜌)](1 − 𝐿[𝑘(𝜉; 𝜌)] =  𝐿[𝑓(𝜉; 𝜌)] + 𝑠𝑛−1𝑎𝑜 + 𝑠
𝑛−2𝑎1…… .+𝑎𝑛−1 

In compact form: 

𝐿[𝛶(𝜉; 𝜌)] =
 𝐿 [𝑓(𝜉; 𝜌)] + 𝑠𝑛−1𝑎0 + 𝑠

𝑛−2𝑎1…… . 𝑎𝑛−1

(𝑠𝑛 − 𝐿[𝑘(𝜉; 𝜌)])
 

0 ≤ 𝜌 ≤ 1 

And, 

                𝐿[𝛶(𝜉; 𝜌)]    =
𝐿[𝑓(𝜉; 𝜌)] + 𝑠𝑛−1𝑎𝑜 + 𝑠

𝑛−2𝑎1…… .+𝑎𝑛−1

(𝑠𝑛 − 𝐿[𝑘(𝜉; 𝜌)])
 

0 ≤ 𝜌 ≤ 1 

Now applying the 𝐿−1 on the both sides of the equation above equation. we can without much of 

a stretch get the estimation of  𝛶(𝜉; 𝜌) and 𝛶(𝜉, 𝜌) where 0 ≤ 𝜌 ≤ 1 

 

Numerical problems 

Example 2.1:  The FVID equation is 
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𝛶(2)(𝜉) = (𝜌 + 2,4 − 𝜌)𝜉 + ∫(𝜉 − 𝑡)𝛶(𝑡)𝑑𝑡

𝜉

0

 

𝛶(0) = (𝜌 + 1,3 − 𝜌); 𝛶(1)(0) = (𝛼, 2 − 𝛼) 

                                                                                                                                                (2.9) 

The use of fuzzy Laplace transforms on (2.9) will give us  

𝐿[𝛶(2)(𝜉)] = 𝐿[(𝜌 + 2,4 − 𝜌)𝜉] + 𝐿[𝜉]𝐿[𝛶(𝜉)] 

                𝑠2𝐿{𝛶(𝜉)} − 𝑠(𝛶(0)) − 𝛶(1)(0) = 𝐿{((𝜌 + 2,4 − 𝜌)𝜉)} + 𝐿{𝜉}𝐿{(𝛶(𝜉)}              (2.10) 

𝑠2𝐿{𝛶(𝜉; 𝜌)} = 𝐿{ (𝜌 + 2)𝜉} + 𝐿{𝜉}𝐿{𝛶(𝜉; 𝜌)} + 𝑠(𝜌 + 1) + 𝜌 

                                                            𝛶(0) = 𝜌 + 1, 𝛶(1)(0) = 𝜌                                                     (2.11) 

𝑠2𝐿{𝛶(𝜉; 𝜌)} = 𝐿{ (4 − 𝜌)𝜉} + 𝐿{𝜉}𝐿{𝛶(𝜉; 𝜌)} + 𝑠(3 − 𝜌) + (2 − 𝜌) 

                                                           𝛶(0) = 3 − 𝜌, 𝛶(1)(0) = 2 − 𝜌                                       (2.12) 

By simplification of (2.11) and (2.12) 

                                         𝐿{Υ(𝜉; 𝜌)} = (𝜌 + 2) (
1

𝑠4−1
) + (𝜌 + 1) (

𝑠3

𝑠4−1
) + 𝜌 (

𝑠2

𝑠4−1
)                    

                                                                                                                                                (2.13) 

     𝐿{Υ(𝜉; 𝜌)} = (4 − 𝜌) (
1

𝑠4 − 1
) + (3 − 𝜌) (

𝑠3

𝑠4 − 1
) + (2 − 𝜌) (

𝑠2

𝑠4 − 1
) 

                                                                                                                                              (2.14) 

Now by applying the inverse fuzzy Laplace transform one two sides of the (2.13) and (2.14) 

𝐿−1[𝐿{𝛶(𝜉; 𝜌)}] = 𝐿−1 [(𝜌 + 2) (
1

𝑠4 − 1
) + (𝜌 + 1) (

𝑠3

𝑠4 − 1
) + 𝜌 (

𝑠2

𝑠4 − 1
)] 

𝐿−1[𝐿{𝛶(𝜉; 𝜌)}] = 𝐿−1 [(4 − 𝜌) (
1

𝑠4 − 1
) + (3 − 𝜌) (

𝑠3

𝑠4 − 1
) + (2 − 𝜌) (

𝑠2

𝑠4 − 1
)] 

Gives, 
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𝛶(𝜉; 𝜌) = (𝜌 + 2).
1

2
(𝑠𝑖𝑛ℎ𝜉 − 𝑠𝑖𝑛𝜉) + (𝜌 + 1).

1

2
(𝑐𝑜𝑠𝜉 + 𝑐𝑜𝑠ℎ𝜉) + (𝜌)(𝑠𝑖𝑛𝜉 + 𝑠𝑖𝑛ℎ𝜉) 

𝛶(𝑡; 𝜌) = (4 − 𝜌).
1

2
(𝑠𝑖𝑛ℎ𝜉 − 𝑠𝑖𝑛𝜉) + (3 − 𝜌).

1

2
(𝑐𝑜𝑠𝜉 + 𝑐𝑜𝑠ℎ𝜉)

+ (2 − 𝜌)(𝑠𝑖𝑛𝜉 + 𝑠𝑖𝑛ℎ𝜉)                                                                  0 ≤ 𝜌 ≤ 1 
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Chapter No 3 

Use of sumudu decomposition method for solution of 

different Volterra integro-differential equation 

This technique is to acquire approximate solutions for nonlinear scheme of VID equations through 

the assistance of SDM. The procedure depends on the use of Sumudu transform to nonlinear 

coupled VID equation. Nonlinear part of the equation can be solved with the use of Adomian 

polynomials. We represent which were gotten with the assistance of Adomian decomposition 

method method(ADM).  

The linear and nonlinear Volterra integro-differential equations emerge in numerous logical fields, 

for example, the populace dynamics, spread of pandemics and semiconductor gadgets. The 

researchers in various parts of science have been attempting to take care of this sort of issues; be 

that as it may, finding a correct arrangement isn't simple because of the nonlinear piece of these 

sort gatherings of conditions. Distinctive analytical techniques have been produced and connected 

to find the solutions. For instance, Adomian has presented a supposed decomposition method for 

the solution of arithmetical, differential, integro-differential, differential-deferral and partial 

differential equation. In the nonlinear case for ordinary differential equation and equations which 

depend more than one variable, the technique takes the benefit of managing specifically by the 

problems. Such conditions are illuminated deprived of changing them to equivalent form which is 

increasingly simple. The method minimizes linearization, perturbation, discretization, or any 

nonreal supposition. It was additionally proposed in that is the repeated terms show up only for 

inhomogeneous equation. Therefore, furthermost as of late Wazwaz built up a vital condition that 

is Fundamentally expected to guarantee the presence of "noise terms" in the inhomogeneous 

circumstances. The vital change has been utilized to explain a wide range of sorts of differential 

and integro-differential equations. For comparative issues, Sumudu transform was acquainted and 

further connected with a few ODEs just as PDEs. [9,13,14] 

There are some important and interesting properties we will discuss below. 

                                                  𝑓(𝑡) = ∑𝑎𝑛𝑡
𝑛

∞

𝑛=0

  𝑡ℎ𝑒𝑛    𝐹(𝑢) = ∑𝑛! 𝑎𝑛𝑢
𝑛

∞

𝑛=0

                                (3.1) 



32 
 

 
 

the close association between STD technique emerging for getting the solution of nonlinear VID 

condition is illustrated. [22,23] 

Amid the investigation, we use the same transform which is characterized over the arrangement of 

the accompanying functions: 

                                   𝐴 = {𝑓(𝑡): ∃𝑀, 𝜏1,𝜏2, > 0, |𝑓(𝑡)| < 𝑀𝑒
𝑡

𝜏𝑗 , 𝑖𝑓 𝑡𝜖(−1)𝑗 × [0,∞)}         (3.2)                                                         

Use of given property 

𝐺(𝑢) = 𝑠[𝑓(𝑡); 𝑢] 

                                           = ∫ 𝑓(𝑢𝑡)𝑒−𝑡𝑑𝑡, 𝑢 ∈ (

∞

0

𝜏1,𝜏2)                             

 

3.1 Main Method: 

 

We consider general nonlinear Volterra integro-differential equation: 

                                                 
𝑑𝑛𝛶

𝑑𝜉𝑛
= 𝑓(𝜉) + ∫𝑘(𝜉 − 𝑡)𝐹(𝛶(𝑡))𝑑𝑡 

𝜉

0

                                               (3.3) 

For getting the solution of nonlinear VIE by the use of Sumudu transform technique, it is needed 

to use Sumudu transforms of  
𝑑𝑛𝛶

𝑑𝜉𝑛
 . So, the results will be given below as 

𝒮 [
𝑑𝑛𝑢

𝑑𝜉𝑛
] =

1

𝑢𝑛
𝒮[𝛶(𝜉)] −

1

𝑢𝑛
𝛶(0) −

1

𝑢𝑛−1
𝛶(1)(0) − ⋯−

𝛶(𝑛−1)(0)

𝑢
   

                                        (3.4) 

Applying Sumudu transform to both sides of (3.3) gives 

1

𝑢𝑛
𝒮[𝛶(𝜉)] −

1

𝑢𝑛
𝛶(0) −

1

𝑢𝑛−1
𝛶(1)(0) − ⋯−

𝛶(𝑛−1)(0)

𝑢
 

                                      = 𝒮[𝑓(𝜉)] + 𝑢𝒮( 𝑘(𝜉 − 𝑡))𝒮(𝐹(𝛶(𝑡)) 

                    (3.5) 

By arrangements we have,  

𝒮[𝛶(𝜉)]  =  𝑢𝑛𝒮[𝑓(𝜉)] +  𝛶(0) + 𝑢𝛶′(0) + ⋯+ 𝑢𝑛−1𝛶𝑛−1(0) 

                                            +𝑢𝑛+1 𝒮( 𝑘(𝜉 − 𝑡)) 𝒮(𝐹(𝛶(𝑡))                                                                (3.6)                                                                  

The next step of is to compose the results in the form of infinite technique that is 
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𝛶(𝜉, 𝜆) = 𝛶0 + 𝛶1 + 𝛶2 +⋯…𝛶𝑛 ………𝛶∞ 

                                                      𝛶(𝜉, 𝜆) =∑𝛶𝑖(𝜉)

∞

𝑖=0

                                                                             (3.7) 

And the nonlinear part will be handled in such a way  

                                                                    𝐹(𝛶(𝑡)) =  ∑𝐴𝑖

∞

𝑖=0

                                                                 (3.8) 

Where 𝐴𝑖 are Adomian polynomials of 𝛶𝑂 , 𝛶1, 𝛶2… ,𝛶𝑛, And they can be calculated by the following 

formula: 

𝐴𝑖 =
1

𝑖!

𝑑𝑖

𝑑𝜆𝑖
[𝐹(∑𝜆𝑖𝛶𝑖)]

∞

𝑖=0 𝜆=0

,        𝑖 = 0,1,2, ….          

                                                                                                                                                    (3.9) 

And the solution for all the Adomian polynomials 𝐴𝑛 for every arrangement of nonlinearity can 

be estimated by General formula (3.9) can be easily utilized. supposing that the nonlinear function 

is 𝐹(U(𝜉)), that’s why, by using (3.9), Adomian polynomials can be derived as 

𝐴𝑜 = 𝐹(𝛶𝑜),      𝐴1 = 𝛶1𝐹
′(𝛶𝑜) 

𝐴2 = 𝛶2𝐹
′(𝛶𝑜) +

1

2!
𝛶1
2𝐹′′(𝛶𝑜) 

                                               𝐴3 = 𝛶3𝐹
′(𝛶𝑜) + 𝛶1𝛶2𝐹

′′(𝛶𝑜) +
1

3!
𝛶1
3𝐹′′′(𝛶𝑜) 

        𝐴4 = 𝛶4𝐹
′(𝛶𝑜) + (

1

2!
𝛶2
2 + 𝛶1𝛶3) 𝐹

′′(𝛶𝑜) +
1

2!
𝛶1
2 𝛶2𝐹

′′′(𝛶𝑜) +
1

4!
𝛶1
4 𝛶2𝐹

(𝑖𝑣)(𝛶𝑜) 

                             (3.10) 

Substitution of (3.7) and (3.8) into (3.6) yields 

𝒮[∑𝛶𝑖(𝜉)]

∞

𝑖=0

= 𝑢𝑛𝒮[𝑓(𝜉)] +  𝛶(0) + 𝑢𝛶′(0) + ⋯+ 𝑢𝑛−1𝛶𝑛−1(0) 

                                                     +𝑢𝑛+1 𝒮( 𝑘(𝜉 − 𝑡))𝒮([∑𝐴𝑖)]

∞

𝑖=0

                                                    (3.11) 

By comparing the both sides of (3.11) and utilizing standard ADM we will have 

𝒮[𝛶𝑜(𝜉)] = 𝑢𝑛𝒮[𝑓(𝜉)] +  𝛶(0) + 𝑢𝛶′(0) + ⋯+ 𝑢𝑛−1𝛶𝑛−1(0) 

                                                      (3.12) 

𝒮[𝛶1(𝜉)] = 𝑢
𝑛+1 𝒮( 𝑘(𝜉 − 𝑡)) 𝒮(𝐴𝑂(𝜉)), 
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                                                     𝒮[𝛶2(𝜉, 𝑡)] = 𝑢𝑛+1 𝒮( 𝑘(𝜉 − 𝑡)) 𝒮(𝐴1(𝜉))..                           

More generally way, we have 

                              𝒮[𝛶𝑖+1(𝜉, 𝑡)] = 𝑢
𝑛+1 𝒮( 𝑘(𝜉 − 𝑡)) 𝒮(𝐴𝑖(𝜉))   𝑖 ≥ 0.                                                         

Combined STAD method for getting the solution of nonlinear VIDE of the 2nd type will be 

exemplified by reviewing the succeeding case. 

 

Numerical problems: 

Example 3.1 

The nonlinear VIDE is given below. 

𝛶(2)(𝑥) = −1 −
1

3
(𝑠𝑖𝑛𝜉 + sin(2𝜉)) + 𝑐𝑜𝑠𝜉 + ∫sin(𝜉 − 𝑡) 𝛶2

𝜉

0

(𝑡)𝑑𝑡               

                                                         𝛶′(0) = −1, 𝛶(0) = 1                                                                  (3.13) 

By applying Sumudu transform to both sides of (3.13) we obtain 

1

𝑢2
𝒮[𝛶(𝑥)] −

1

𝑢2
𝛶(0) −

1

𝑢
𝛶(1)(0) = −1 −

1

3
(

𝑢

1 + 𝑢2
+

2𝑢

1 + 4𝑢2
+

1

1 + 𝑢2
) +

𝑢2

1 + 𝑢2
𝒮[𝛶2(𝑡)] 

                                                                                                                                                  (3.14) 

Or equivalently, 

 𝒮[𝛶(𝜉)] = 1 − 𝑢 − 𝑢2 −
1

3
(

𝑢3

1 + 𝑢2
+

2𝑢3

1 + 4𝑢2
+

𝑢2

1 + 𝑢2
) +

𝑢4

1 + 𝑢2
𝒮[𝛶2(𝑡)]  

                                                                                                                                                  (3.15) 

Putting the values for Υ(𝑠) and Adomian polynomials for (𝛶2(𝑡))  in (3.14) and (3.15), 

respectively, by utilizing the recursive relation equation (3.15), we will get 

𝒮[𝛶(𝜉)] = 1 − 𝑢 − 𝑢2 −
1

3
(

𝑢3

1 + 𝑢2
+

2𝑢3

1 + 4𝑢2
+

𝑢2

1 + 𝑢2
)                                                         (3.16) 

Recall that Adomian polynomials for 𝐹(𝑢(𝑥)) = Υ2(𝑥) are given by 

𝐴𝑂 = 𝛶0
2,             𝐴1 = 2𝛶0𝛶1, 

                                                   𝐴2 = 2𝛶0𝛶2 + 𝛶1
2,      𝐴3 = 2𝛶0𝛶3 +  2𝛶1                                        (3.17) 

Taking inverse sumudu transform on (3.16) and it will give us 

𝛶0(𝜉) = −1 + 𝜉 +
1

2
𝜉2 −

1

6
𝜉3 −

1

12
𝜉4 +

1

40
𝜉5 +

1

360
𝜉6 −

11

5040
𝜉7 +⋯ 

                        𝛶1(𝜉) =
1

24
𝜉4 −

1

60
𝜉5 −

1

720
𝜉6 +

1

504
𝜉7…                                                         (3.18) 
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we obtain the series solution as follows 

𝛶(𝜉) = (𝜉 −
1

3!
𝜉3 +

1

5!
𝜉5 −

1

7!
𝜉7 +⋯) − (1 −

1

4!
𝜉4 +

1

6!
𝜉6 −

1

8!
𝜉8 +⋯) 

                                                                                                                                                  (3.19) 

The exact result is specified as 

                                                                𝛶(𝜉) = sin(𝜉) − cos(𝜉)                                                       (3.20) 

In the next problem, we apply the combined STAD method. 

 

 

 

3.2 The nonlinear VIDE of the 1st kind  

 

                               ∫ 𝑘1(𝜉 − 𝑡)𝐹(𝛶(𝑡))𝑑𝑡 + ∫𝑘2(𝜉 − 𝑡)𝛶
𝑛(𝑡)𝑑𝑡 = 𝑓(𝜉)

𝜉

0

 

𝜉

0

                               (3.21) 

Applying Sumudu transform on (3.21) we will obtain 

                                     𝒮 (𝑘1(𝜉) ∗ 𝐹((𝛶))) + 𝒮(𝑘2(𝜉) ∗ 𝛶
𝑛(𝜉)) = 𝒮(𝑓(𝜉))                               (3.22) 

                            𝑢𝑘1(𝑢)𝒮𝐹((𝛶(𝜉)))) + 𝑢𝑘2(𝑢)𝒮((𝛶
𝑛(𝜉)) = 𝐹(𝑢)𝒮[𝛶(𝑥)]                            (3.23) 
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                           = 𝑢𝑛−1(
𝐹(𝑢) + 𝑘2(𝑢)𝜓(𝑢) − 𝑢𝑘1(𝑢)𝒮 (𝐹(𝛶(𝜉)))

𝑘2(𝑢)
)                                    (3.24) 

Where 

                                           𝜓(𝑢) =
1

𝑢𝑛−1
𝛶(0) +

1

𝑢𝑛−2
𝛶′(0) + ⋯+ 𝛶𝑛−1(0)                              (3.25) 

We can apply Adomian decomposition method to handle (3.24) Substituting (3.10) and (3.11) into 

(3.24), 

𝒮[∑𝛶𝑖(𝜉)]

∞

𝑖=0

=
𝑢𝑛−1𝒮[𝑓(𝜉)]

𝑘2(𝑢)
+ 𝛶(0) + 𝑢𝛶′(0) + ⋯+ 𝑢𝑛−1𝛶𝑛−1(0) − 𝑢𝑛

𝑘1(𝑢)

𝑘2(𝑢)
𝒮 ([∑𝐴𝑖

∞

𝑖=0

])  

 (3.26) 

The use of the following recursive relation will give us 

                                        𝛶0(𝜉) =
𝑢𝑛−1𝒮[𝑓(𝜉)]

𝑘2(𝑢)
+ 𝛶(0) + 𝑢𝛶′(0) + ⋯+ 𝑢𝑛−1𝛶𝑛−1(0)                 (3.27)                                                                                  

                                    𝛶𝑘+1(𝜉) = −𝑢𝑛
𝑘1(𝑢)

𝑘2(𝑢)
𝒮(𝐴𝑘)                   𝑘 ≥ 0                                              (3.28) 

 

Example.3.3 

 The nonlinear VIDE of the 1st kind is assumed below solving by the combined STAD 

method 

∫(𝜉 − 𝑡)𝛶2(𝑡)𝑑𝑡 + ∫𝑒(𝜉−𝑡)𝛶(1)(𝑡)𝑑𝑡 = −
1

4
−
1

2
𝜉 + 𝑥𝑒𝜉 +

1

4

𝜉

0

𝜉

0

𝑒2𝜉  , 𝛶(0) = 1 

 (3.29) 

By applying Sumudu transforms to both sides of (3.29), we have 

𝒮(𝛶(𝜉)) = 1 −
1 − 𝑢

4
−
1

2
𝑢(1 − 𝑢) +

𝑢

(1 − 𝑢)
+ 1 −

𝑢

4(1 − 2𝑢)
− 𝑢2(1 − 𝑢)𝒮[𝛶2(𝜉)] 

(3.30) 

The series assumption for 𝛶(𝜉)  and Adomian polynomials for 𝛶2(𝜉) in (3.30) gives 

                𝒮(𝛶0(𝜉)) = 1 −
1 − 𝑢

4
−
1

2
𝑢(1 − 𝑢) +

𝑢

(1 − 𝑢)
+ 1 −

𝑢

4(1 − 2𝑢)
              (3.31) 

                                         𝒮(𝛶𝑘+1(𝜉)) = −𝑢2(1 − 𝑢)𝒮[𝛶2(𝜉)]                                           (3.32) 

By inverse Sumudu transform for the both of the sides of (3.31) and with the help of recursive 

relation equation (3.32) give 
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𝛶0(𝜉) = 1 + 𝜉 + 𝜉2 +
1

3
𝜉3 +

1

8
𝜉4 +

1

24
𝜉5 +⋯ 

𝛶1(𝜉) = −
1

2
𝜉2 −

1

6
𝜉3 −

1

6
𝜉4 −

1

12
𝜉5 −⋯, 

                                                            𝛶2(𝑥) =
1

12
𝜉4 +

1

20
𝜉5 +                                                      (3.33)  

The series solution is given by 

                                               𝛶(𝜉) = 1 + 𝜉 +
1

2!
𝜉2 +

1

3!
𝜉3 +

1

4!
𝜉4 +⋯                                       (3.34) 

And the exact solution is 

𝛶(𝑥) = 𝑒𝜉                 

 

 

3.4 System of nonlinear VIDE.  

In the study of this part, we will examine frameworks of nonlinear VIDE for the 2nd kind by 

combined STAD method. Consider frameworks of nonlinear VIDE for the 2nd type as pursues: 

𝛶𝑛(𝜉) = 𝑓1(𝜉) + ∫(𝐾1(𝜉 − 𝑡)𝐹1(𝛶(𝑡)) + 𝑅1(𝜉 − 𝑡)𝐺1(𝑉(𝑡))1) 𝑑𝑡,

𝜉

0
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𝑉𝑛(𝜉) = 𝑓2(𝜉) + ∫(𝐾2(𝜉 − 𝑡)𝐹2(𝛶(𝑡)) + 𝑅2(𝜉 − 𝑡)𝐺2(𝑉(𝑡))) 𝑑𝑡.

𝜉

0

 

   (3.35) 

Applying Sumudu transforms to both sides of above equation, we have 

1

𝑢𝑛
𝒮[𝛶(𝜉)] −

1

𝑢𝑛
𝛶(0) −

1

𝑢𝑛−1
𝛶′(0) − ⋯−

𝛶𝑛−1(0)

𝑢
 

                                      = 𝒮[𝑓1(𝜉)] + 𝒮( 𝑘1(𝜉) ∗ 𝐹1(𝛶(𝑡)) + 𝑅1(𝜉) ∗ 𝐺1(𝑉(𝜉))     

1

𝑢𝑛
𝒮[𝑉(𝜉)] −

1

𝑢𝑛
𝑉(0) −

1

𝑢𝑛−1
𝑉′(0) − ⋯−

𝑉𝑛−1(0)

𝑢
 

                              = 𝒮[𝑓2(𝜉)] + 𝒮( 𝐾2(𝜉) ∗ 𝐹2(𝛶(𝑡)) + 𝑅2(𝜉) ∗ 𝐺2(𝑉(𝜉))                                (3.36) 

After rearrangement, we get 

𝒮[𝛶(𝜉)]  = 𝛶(0) + 𝑢𝛶′(0) + ⋯+ 𝑢𝑛−1𝛶𝑛−1(0) + 𝑢𝑛𝒮[𝑓1(𝜉)] +  𝒮( 𝑘1(𝜉) ∗ 𝐹1(𝛶(𝑡))

+ 𝑅1(𝜉) ∗ 𝐺1(𝑉(𝑥))  

𝒮[𝑉(𝜉)]  = 𝑉(0) + 𝑢𝑉′(0) + ⋯+ 𝑢𝑛−1𝑉𝑛−1(0) + 𝑢𝑛𝒮[𝑓2(𝜉)] +  𝒮( 𝐾2(𝜉) ∗ 𝐹2(𝑢(𝑡))      

+ 𝑅2(𝜉) ∗ 𝐺2(𝑉(𝜉))                                                                                                 (3.37) 

To defeat the trouble of the relations involving the nonlinear 𝐹𝑖(𝛶(𝜉)), 𝑖 = 1,2,we use ADM for 

solving (3.35) and (3.36). For getting our solution, firstly we introduce linear terms 𝛶((𝜉) and V 

(𝜉) in left side with the help of infinite series of components. 

 

                                                     𝛶(𝜉) =∑𝛶𝑖

∞

𝑖=0

(𝜉),        𝑉(𝜉) =∑𝑉𝑖

∞

𝑖=0

(𝜉)                                      (3.38) 

Also, the nonlinear part 𝐹𝑖(𝑢(𝜉)) in the right side of (3.35) and (3.36) by 

𝐹𝑖(𝛶(𝑡)) = ∑𝐴𝑛

∞

𝑛=0

   

                                                              𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
[𝐹(∑𝜆𝑖𝛶𝑖)]

𝑛

𝑖=0 𝜆=0

                                               (3.39) 

Where Adomian polynomials 𝐴𝑛, 𝑛≥0, can be obtained for all forms of nonlinearity. Substituting 

(3.38) and (3.39) into (3.35) and (3.36) leads to 
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𝒮 [∑𝛶𝑖

∞

𝑛=0

(𝜉)] = 𝛶(0) + 𝑢𝛶′(0) + ⋯+ 𝑢𝑛−1𝛶𝑛−1(0) + 𝑢𝑛𝒮[𝑓1(𝜉)]

+ 𝑢𝑛𝒮( 𝐾1(𝜉))𝒮 ([∑𝐴𝑛

∞

𝑛=0

]) + 𝑢𝑛𝒮( 𝑅1(𝜉))𝒮 ([∑ �̃�𝑛

∞

𝑛=0

])           

                                                                                                                                                  (3.40) 

𝒮 [∑𝑉𝑖

∞

𝑛=0

(𝜉)] = 𝑉(0) + 𝑢𝑉′(0) + ⋯+ 𝑢𝑛−1𝑉𝑛−1(0) + 𝑢𝑛𝒮[𝑓2(𝜉)]

+ 𝑢𝑛𝒮( 𝐾2(𝜉))𝒮 ([∑𝐵𝑛

∞

𝑛=0

]) + 𝑢𝑛𝒮( 𝑅2(𝜉))𝒮 ([∑𝐵𝑛

∞

𝑛=0

]) 

                                                                                                                                                  (3.41) 

The recursive relation helps to obtain these results 

 𝒮[𝛶0(𝜉)] =  𝛶(0) + 𝑢𝛶′(0) + ⋯+ 𝑢𝑛−1𝛶𝑛−1(0) + 𝑢𝑛𝒮[𝑓1(𝜉)]   

𝒮[𝛶𝑘+1(𝜉)] = 𝑢𝑛𝒮( 𝐾1(𝜉))𝒮(𝐴𝑘) + 𝑢
𝑛𝒮( 𝑅1(𝜉))𝒮(�̃�𝑘)   

𝒮[𝑉0(𝜉)] =  𝑉(0) + 𝑢𝑉
′(0) + ⋯+ 𝑢𝑛−1𝑉𝑛−1(0) + 𝑢𝑛𝒮[𝑓2(𝜉)]   

                                    𝒮[𝑉𝑘+1(𝜉)] = 𝑢
𝑛𝒮( 𝐾2(𝜉))𝒮(𝐵𝑘) + 𝑢

𝑛𝒮( 𝑅2(𝜉))𝒮(𝐵𝑘)                         (3.42) 

The combined STAD method for the solution of systems of the Volterra integro-differential 

equations of the nonlinear type will be clearer by understanding the given below example. [27] 

 

Example 3.4. 

Use CSTAD method for solving given Volterra integro-differential equation 

𝛶(2)(𝜉) =
7

3
𝑒𝜉 − 𝑒2𝜉 −

1

4
𝑒4𝜉 +∫𝑒𝜉−𝑡(𝛶2(𝑡) + 𝑉2(𝑡))𝑑𝑡

𝜉

0

 

𝑉(2)(𝜉) =
2

3
𝑒𝜉 + 3𝑒2𝜉 +

1

3
𝑒4𝜉 +∫𝑒𝜉−𝑡(𝛶2(𝑡) − 𝑉2(𝑡))𝑑𝑡

𝜉

0

 

𝛶(0) = 1, 𝛶(1)(0) = 1, 𝑉(0) = 1, 𝑉(1)(0) = 2 

                                                                                                                                                  (3.43) 

Taking Sumudu transforms of both sides of (3.43), we obtain 

𝛶(𝑢) = 1 + 𝑢 +
7𝑢2

3(1 − 𝑢)
−

𝑢2

(1 − 2𝑢)
−

𝑢2

3(1 − 4𝑢)
+ (

𝑢3

1 − 𝑢
)  𝒮[𝛶2(𝑥) + 𝑉2(𝑥)], 
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𝑉(𝑢) = 1 + 2𝑢 +
2𝑢2

3(1 − 𝑢)
+

3𝑢2

(1 − 2𝑢)
−

𝑢2

3(1 − 4𝑢)
+ (

𝑢3

1 − 𝑢
)  𝒮[𝛶2(𝜉) − 𝑉2(𝜉)] 

                                                                                                                                                  (3.44) 

By using (3.39), we have 

𝛶0(𝑢) = 1 + 𝑢 +
7𝑢2

3(1 − 𝑢)
−

𝑢2

(1 − 2𝑢)
−

𝑢2

3(1 − 4𝑢)
, 

𝛶𝑘+1(𝑢) = (
𝑢3

1 − 𝑢
)  𝒮[𝐴𝑘(𝜉) + 𝐵𝑘(𝜉)], 

𝑉0(𝑢) = 1 + 2𝑢 +
2𝑢2

3(1 − 𝑢)
+

3𝑢2

(1 − 2𝑢)
−

𝑢2

3(1 − 4𝑢)
 

                                                    𝑉𝑘+1(𝑢) = (
𝑢3

1 − 𝑢
)  𝒮[𝐴𝑘(𝜉) − 𝐵𝑘(𝜉)]                                        (3.45) 

Recall that Adomian polynomials for 𝛶2(𝜉) and 𝑉2(𝜉)  are given by 

𝐴𝑂 = 𝛶0
2,             𝐴1 = 2𝛶0𝛶1, 

          𝐴2 = 2𝛶0𝛶2 + 𝛶1
2,      𝐴3 = 2𝛶0𝛶3 +  2𝛶1𝛶2, 

𝐵𝑂 = 𝑉0
2,             𝐵1 = 2𝑉0𝑉1, 

                                               𝐵2 = 2𝑉0𝑉2 + 𝑉1
2,      𝐵3 = 2𝑉0𝑉3 +  2𝑉1𝑉2,                                      (3.46) 

the inverse Sumudu transform of (3.44) and with the help of recursive relation equations (3.45), 

the solution is as follows, 

𝛶(𝜉) = (1 + 𝜉 +
1

2!
𝜉2 +

1

3!
𝜉3 +

1

4!
𝜉4 +⋯), 

𝑉(𝜉) = (1 + 2𝜉 +
1

2!
(2𝜉)2 +

1

3!
(2𝜉)3 +

1

4!
(2𝜉)4 +⋯). 

                                                                                                                                                  (3.47) 

Then the solution for the above system is given by 

𝛶(𝜉) = 𝑒𝜉                                    𝑉(𝜉) = 𝑒2𝜉                    (3.48) 
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Chapter.04 

Use of Sumudu Decomposition method for solution of 

fuzzy Integro-differential equation 

4.1 Analysis of method 

 

Consider a Volterra integro-differential equation [13,14] 

                                        𝛶𝑛(𝜉, 𝜌) = 𝑓(𝜉, 𝜌) + ∫𝑘(𝜉 − 𝑡)

𝜉

0

𝛶(𝑡, 𝜌)𝑑𝑡                                                (4.1) 

𝛶𝑘(0) = 𝑝 = (𝑝𝑘, 𝑝𝑘);  0≤𝑘≤𝑛−1                      

By taking sumudu transform on (4.1) of equation 

                             𝒮[𝛶𝑛(𝜉, 𝜌)] = 𝒮[𝑓(𝜉, 𝜌)] + 𝒮 [∫𝑘(𝜉 − 𝑡)

𝜉

0

𝛶(𝑡, 𝜌)𝑑𝑡]                                       (4.2) 

This will give us, 

                  
1

𝑢𝑛
𝒮[𝛶(𝜉, 𝜌)] −

1

𝑢𝑛
𝛶(0, 𝜌) −

1

𝑢𝑛−1
𝛶(1)(0, 𝜌) − ⋯−

𝛶(𝑛−1)(0, 𝜌)

𝑢

= 𝒮[𝑓(𝜉, 𝜌)] +  𝒮 [∫𝑘(𝜉 − 𝑡)

𝜉

0

𝛶(𝑡, 𝜌)𝑑𝑡]                                                               (4.3) 

                
1

𝑢𝑛
𝒮[𝛶(𝜉, 𝜌)] −

1

𝑢𝑛
𝛶(0, 𝜌) −

1

𝑢𝑛−1
𝛶′(0, 𝜌) − ⋯−

𝛶𝑛−1(0, 𝜌)

𝑢

= 𝒮 [𝑓(𝜉, 𝜌)] + 𝑢𝒮[𝑘(𝜉 − 𝑡)]𝒮[𝛶(𝜉, 𝑡)]                                                                  (4.4) 

                
1

𝑢𝑛
𝒮[𝛶(𝜉, 𝜌)] −

1

𝑢𝑛
𝛶(0, 𝜌) −

1

𝑢𝑛−1
𝛶
(1)
(0, 𝜌) − ⋯−

𝛶
(𝑛−1)

(0, 𝜌)

𝑢

= 𝒮[𝑓(𝜉, 𝜌)] + 𝑢𝒮[𝑘(𝜉 − 𝑡)]𝒮[𝛶(𝜉, 𝑡)]                                                                   (4.5) 

Note that 

                             𝛶(0, 𝜌) = 𝑝0, 𝛶
(1)(0, 𝜌) = 𝑝1……… 𝛶

𝑛−1(0, 𝜌) = 𝑝𝑛−1 

𝛶(0, 𝜌) = 𝑝
0
, 𝛶(1)(0, 𝜌) = 𝑝

1
……… 𝛶

𝑛−1
(0, 𝜌) = 𝑝

𝑛−1
 

Equation (4) and (5) becomes 
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1

𝑢𝑛
𝒮[𝛶(𝜉, 𝜌)] −

1

𝑢𝑛
𝑝0 −

1

𝑢𝑛−1
𝑝1 −⋯−

𝑝𝑛−1

𝑢
= 𝒮 [𝑓(𝜉, 𝜌)] + 𝑢𝒮[𝑘(𝜉 − 𝑡)]𝒮[𝛶(𝜉, 𝜌) 

         (4.6) 

1

𝑢𝑛
𝒮[𝛶(𝜉, 𝜌)] −

1

𝑢𝑛
𝑝
0
−

1

𝑢𝑛−1
𝑝
1
−⋯−

𝑝
𝑛−1

𝑢
= 𝒮[𝑓(𝜉, 𝜌)] + 𝑢𝒮[𝑘(𝜉 − 𝑡)]𝒮[𝛶(𝜉, 𝜌)] 

 (4.7) 

The following cases can be discussed 

(i)  if 𝛶(𝜉; 𝜌) and 𝑘(𝜉; 𝜌) both are positive 

𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] = 𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] 

𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] = 𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] 

(ii)  if 𝛶(𝜉; 𝜌) is negative and 𝑘(𝜉; 𝜌) is positive 

𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] =  𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] 

𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] = 𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] 

(iii)  if 𝛶(𝜉; 𝜌) is positive and 𝑘(𝜉; 𝜌) is negative 

𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] = 𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] 

𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] = 𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] 

(iv)  if 𝛶(𝜉; 𝜌) and 𝑘(𝜉; 𝜌) both are negative 

𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] =  𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] 

𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] =  𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] 

 

We will explore Case1 and remaining are same 

After simplification (6) and (7) becomes 

𝒮[𝛶(𝜉, 𝜌)] − 𝑝0 − 𝑢𝑝1 −⋯− 𝑢
𝑛−1𝑝𝑛−1 = 𝑢𝑛𝒮 [𝑓(𝜉, 𝜌)] + 𝑢𝑛+1 𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] 

                                                                                                                                                    (4.8) 

𝒮[𝛶(𝜉, 𝜌)] − 𝑝
0
− 𝑢𝑝

1
−⋯− 𝑢𝑛−1𝑝

𝑛−1
= 𝑢𝑛𝒮[𝑓(𝜉, 𝜌)] + 𝑢𝑛+1𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] 

   (4.9) 

After simplification, 

𝒮[𝛶(𝜉, 𝜌)] − 𝑢𝑛+1 𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] = 𝑢𝑛𝒮 [𝑓(𝜉, 𝜌)] + 𝑝0 + 𝑢𝑝1 +⋯+ 𝑢
𝑛−1𝑝𝑛−1 

                                                                                                                                                  (4.10) 

𝒮[𝛶(𝜉, 𝜌)] − 𝑢𝑛+1𝒮[𝑘(𝜉, 𝜌)]𝒮[𝛶(𝜉, 𝜌)] = 𝑢𝑛𝒮[𝑓(𝜉, 𝜌)] + 𝑢𝑝
1
+⋯+ 𝑢𝑛−1𝑝

𝑛−1
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        (4.11) 

Equation (10) and (11) will give us 

𝒮[𝛶(𝜉, 𝜌)] =
𝑢𝑛𝒮 [𝑓(𝜉, 𝜌)] + 𝑝0 + 𝑢𝑝1 +⋯+ 𝑢𝑛−1𝑝𝑛−1

(1 − 𝑢𝑛+1𝒮[𝑘(𝜉 − 𝑡)])
 

                                                                                                                                            (4.12) 

𝒮[𝛶(𝜉, 𝜌)] =
𝑢𝑛𝒮[𝑓(𝜉, 𝜌)] + 𝑢𝑝

1
+⋯+ 𝑢𝑛−1𝑝

𝑛−1

(1 − 𝑢𝑛+1𝒮[(𝑘(𝜉 − 𝑡)])
 

                                                                                                                                            (4.13) 

By taking the inverse sumudu decomposition method we can get the value of 𝛶(𝜉, 𝜌) and 𝛶(𝜉, 𝜌)  

Now by decomposition method, 

∑𝛶𝑖(𝜉, 𝜌) = 𝛶0(𝜉, 𝜌) + 𝛶1(𝜉, 𝜌)

∞

𝑖=0

+ 𝛶2(𝜉, 𝜌) +⋯𝛶𝑛(𝜉, 𝜌) 

And  

∑𝛶𝑖(𝜉, 𝜌) = 𝛶0(𝜉, 𝜌) + 𝛶1(𝜉, 𝜌)

∞

𝑖=0

+ 𝛶2(𝜉, 𝜌) + ⋯𝛶𝑛(𝜉, 𝜌) 

We can write as  

Where, 

𝒮[𝛶0(𝜉, 𝜌)] = 𝑢
𝑛𝒮 [𝑓(𝜉, 𝜌)] + 𝑝0 + 𝑢𝑝1 +⋯+ 𝑢

𝑛−1𝑝𝑛−1 

𝒮[𝛶1(𝜉, 𝜌)] = 𝑢𝑛+1𝒮[𝑘(𝜉 − 𝑡)]𝒮[𝛶0(𝜉, 𝜌)] 

𝒮[𝛶1(𝜉, 𝜌)] = 𝑢
𝑛+1𝒮[𝑘(𝜉 − 𝑡)]𝒮[𝛶1(𝜉, 𝜌)] 

                                                . 

                                                . 

                                                . 

𝒮[𝛶𝑛(𝜉, 𝜌)] = 𝑢𝑛+1𝒮[𝑘(𝜉 − 𝑡)]𝒮[𝛶𝑛−1(𝜉, 𝜌)] 

Similarly, 

𝒮[𝛶0(𝜉, 𝜌)] = 𝑢
𝑛𝒮 [𝑓(𝜉, 𝜌)] + 𝑝0 + 𝑢𝑝1 +⋯+ 𝑢

𝑛−1𝑝𝑛−1 

𝒮[𝛶1(𝜉, 𝜌)] = 𝑢
𝑛+1𝒮[𝑘(𝜉 − 𝑡)]𝒮[𝛶0(𝜉, 𝜌)] 

𝒮[𝛶2(𝜉, 𝜌)] = 𝑢
𝑛+1𝒮[𝑘(𝜉 − 𝑡)]𝒮[𝛶1(𝜉, 𝜌)] 

                                                . 
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                                                . 

                                                . 

𝒮[𝛶𝑛(𝜉, 𝜌)] = 𝑢
𝑛+1𝒮[𝑘(𝜉 − 𝑡)]𝒮[𝛶𝑛−1(𝜉, 𝜌)] 

For nonlinear we will use adomian polynomials for nonlinear portion, 

𝐴0 = 𝛶𝑂
2    ,        𝐴1 = 2𝛶𝑂

 𝛶1  

𝐴2 = 2𝛶𝑂
 𝛶2 + 𝛶1

2 ,   𝐴3 = 2𝛶𝑂
 𝛶1 + 2𝛶1𝛶2

 
 

Then the equation will become, 

𝒮 [∑𝛶𝑖(𝜉, 𝜌)

∞

𝑖=0

] − 𝑝0 − 𝑢𝑝1 −⋯− 𝑢
𝑛−1𝑝𝑛−1 = 𝑢𝑛𝒮 [𝑓(𝜉, 𝜌)] + 𝑢𝑛+1𝒮 [𝑘(𝑥 − 𝑡)]𝒮[∑𝐴𝑗−1

∞

𝑗=1

] 

                              (4.14) 

𝒮 [∑𝛶𝑖(𝜉, 𝜌)

∞

𝑖=0

] − 𝑝
0
− 𝑢𝑝

1
−⋯− 𝑢𝑛−1𝑝

𝑛−1
= 𝑢𝑛𝒮[𝑓(𝜉, 𝜌)] + 𝑢𝑛+1𝒮 [𝑘(𝜉 − 𝑡)]𝒮[∑𝐴𝑗−1

∞

𝑗=1

] 

 

4.2 Numerical Examples 

Example 4.1 

 

A linear fuzzy integro-differential Equation is 

               𝛶(1)(𝜉, 𝜌) = 𝑓(𝜉, 𝜌) − ∫𝛶(𝑡, 𝜌)𝑑𝑡

𝜉

0

              

                                                                                                                                           (4.15) 

             With conditions, 𝛶(0, 𝜌) = (0,0), where 

 

             𝜆 = 1, 0 ≤ 𝑡 ≤ 𝜉, 0 ≤ 𝜌 ≤ 1, 𝐾(𝜉, 𝑡) = 1, 

i.e. 

                        

𝑓(𝜉, 𝜌) = ((𝜌2 + 𝜌), (5 − 𝜌)) 

  Solution: 

             To solve Equation (4.15), for fuzzy integro-differential 
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{
  
 

  
 
𝛶(1)(𝜉, 𝜌) = 𝑓(𝜉, 𝜌) − ∫𝛶(𝑡, 𝜌)𝑑𝑡   

𝜉

0

𝛶 ( 1)̅̅ ̅̅ ̅̅ (𝜉, 𝜌) = 𝑓(𝜉, 𝜌) − ∫𝛶(𝑡, 𝜌)𝑑𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜉

0

 

                                                                                                                                           (4.16) 

 

{
  
 

  
 
𝛶(1)(𝜉, 𝜌) = (𝜌2 + 𝜌) − ∫𝛶(𝑡, 𝜌)𝑑𝑡

𝜉

0

𝛶  ( 1)̅̅ ̅̅ ̅̅ (𝜉, 𝜌) = (5 − 𝜌) − ∫𝛶(𝑡, 𝜌)𝑑𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜉

0

 

                                                                                                                                            (4.17) 

Applying Sumudu transform on (4.17) 

{
  
 

  
 

𝒮[𝛶(1)(𝜉, 𝜌)] = 𝒮((𝜌2 + 𝜌) − 𝒮∫𝛶(𝑡, 𝜌)𝑑𝑡

𝜉

0

    𝒮[𝛶 ( 1)̅̅ ̅̅ ̅̅ ̅(𝜉, 𝜌)] = 𝒮((5 − 𝜌) − 𝒮∫   𝛶 (𝑡, 𝜌)𝑑𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜉

0

 

 

                                                                                                                                          (4.18) 

This will give us 

               {

1

𝑢
𝒮 ( 𝛶 ( 𝜉, 𝜌)) −

1

𝑢
𝛶(0, 𝜌) = (𝜌2 + 𝜌) − 𝑢𝒮 (𝛶 ( 𝜉, 𝜌))

1

𝑢
𝒮 ( 𝛶(𝜉, 𝜌)) −

1

𝑢
𝛶(0, 𝜌) = (5 − 𝜌) − 𝑢𝒮 (𝛶(𝜉, 𝜌))       

  

                                                                                                                                           (4.19) 

On simplification, 

                                         {
 𝒮 ( 𝛶 ( 𝜉, 𝜌)) = 𝑢(𝜌2 + 𝜌) − 𝑢2𝒮 (𝛶 ( 𝜉, 𝜌)) 

 𝒮 (𝛶(𝜉, 𝜌)) = 𝑢(5 − 𝜌) −  𝑢2𝒮 (𝛶(𝜉, 𝜌))   
 

                                                                                                                                            (4.20)           

Taking inverse transform on two sides of equation (4.20) 
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       {
 𝛶 ( 𝜉, 𝜌) =  𝒮−1(𝑢(𝜌2 + 𝜌)) −  𝒮−1(𝑢2𝒮( 𝛶 ( 𝜉, 𝜌))

𝛶(𝜉, 𝜌) =  𝒮−1 (𝑢(5 − 𝜌)) − 𝒮−1( 𝑢2𝒮(𝛶(𝜉, 𝜌))
 

                                                                                                                                            (4.21) 

Now Applying Decomposition method for  𝛶 ( 𝜉, 𝜌), 

                                       𝛶0 = 𝜉(𝛼
2 + 𝛼),  

                                      𝛶1 =  𝒮−1(𝑢2𝒮(𝜉(𝜌2 + 𝜌)),          𝛶1 = −
𝜉3

3!
(𝜌2 + 𝜌) 

                                      𝛶2 =  𝒮
−1(𝑢2𝒮 (

𝜉3

3!
(𝜌2 + 𝜌)),       𝛶2 =

𝜉5

5!
(𝜌2 + 𝜌)    

                                      𝛶3 =  𝒮
−1(𝑢2𝒮 (

𝜉5

5!
(𝜌2 + 𝜌)),         𝛶3 = −

𝜉7

7!
(𝜌2 + 𝜌), 

Similarly, for  𝛶 (𝜉, 𝜌)             

                                             𝛶0 =  𝜉(5 − 𝜌), 

                                        𝛶1 =  𝒮−1( 𝑢2𝒮(𝜉(5 − 𝜌)),            𝛶1 = −
𝜉3

3!
(5 − 𝜌), 

                                        𝛶2 =  𝒮
−1( 𝑢2𝒮 (−

𝜉3

3!
(5 − 𝜌)),    𝛶2 =

𝜉5

5!
(5 − 𝜌),     

                  𝛶3 =  𝒮
−1( 𝑢2𝒮 (

𝜉5

5!
(5 − 𝜌)) ,       𝛶3 = −

𝜉7

7!
(5 − 𝜌) 

Thus, by utilizing above iterative results the series form solution is given as 

                  

{
 

 𝛶(𝜉, 𝜌) =  𝜉(5 − 𝜌) −
𝜉3

3!
(5 − 𝜌) +

𝜉5

5!
(5 − 𝜌) −

𝜉7

7!
(5 − 𝜌)+. . . .

𝛶(𝜉, 𝜌) =  𝜉(5 − 𝜌) −
𝜉3

3!
(5 − 𝜌) +

𝜉5

5!
(5 − 𝜌) −

𝜉7

7!
(5 − 𝜌)+. . . . .

 

                                                                                                                                          (4.22)   

And the exact solution is given as 

{
𝛶(𝜉, 𝜌) = 𝑠𝑖𝑛𝜉(𝜌2 + 𝜌)

𝛶(𝜉, 𝜌) = 𝑠𝑖𝑛𝜉(5 − 𝜌)    
 

                (4.23) 

The equation number (4.23) is representing the exact solution of (4.15). it can be observed more 

accurately by its graphical interpretation.  

 

 



48 
 

 
 

 

     

Example.4.2 

Consider the following fuzzy Volterra integral-differential equation 

{
  
 

  
 
𝛶(1)(𝜉, 𝜌) = (𝜌 − 1) + ∫𝛶(𝑡, 𝜌)𝑑𝑡

𝜉

0

𝛶
(1)
(𝜉, 𝜌) = (1 − 𝜌) + ∫𝛶(𝑡, 𝜌)𝑑𝑡

𝜉

0

 

𝛶(1)(0) = 0 = 𝛶
(1)
(0); 0 ≤ 𝜌 ≤ 1, 0 ≤ 𝑡 ≤ 𝜉,    𝜉 ∈ [0,1] 

                                                                                                                                          (4.24) 

Applying sumudu transform on both sides of the equation (4.24) 

                

{
  
 

  
 
𝒮(𝛶(1)(𝜉, 𝜌)) = 𝒮((𝜌 − 1)) + 𝒮[∫𝛶(𝑡, 𝜌)]𝑑𝑡

𝜉

0

𝒮(𝛶
(1)
(𝜉, 𝜌)) = 𝒮((1 − 𝜌)) + 𝒮[∫𝛶(𝑡, 𝜌)]𝑑𝑡

𝜉

0

 

                                                                                                                                           (4.25) 
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                                            {

1

𝑢
𝒮(𝛶 (𝜉, 𝜌)) −

1

𝑢
𝒮(𝛶 (0, 𝜌) = (𝜌 − 1) + 𝑢𝒮[𝛶(𝜉, 𝜌)]

1

𝑢
𝒮(𝛶

 
(𝜉, 𝜌)) −

1

𝑢
𝒮(𝛶

 
(0, 𝜌) = (1 − 𝜌) + 𝑢𝒮[𝛶(𝜉, 𝜌)]

 

                                                                                                                                           (4.26) 

Arranging the equation (4.26) 

                                             {
𝒮(𝛶 (𝜉, 𝜌)) = 𝑢(𝜌 − 1) + 𝑢2𝒮[𝛶(𝜉, 𝜌)]

𝒮(𝛶
 
(𝜉, 𝜌)) = 𝑢(1 − 𝜌) + 𝑢2𝒮[𝛶(𝜉, 𝜌)]

 

                                                                                                                                            (4.27) 

Applying the inverse sumudu transform in (4.27) 

                                               {
𝛶 (𝜉, 𝜌)) = 𝒮−1(𝑢(𝜌 − 1)) + 𝒮−1(𝑢2𝒮[𝛶(𝜉, 𝜌)])

𝛶
 
(𝜉, 𝜌)) = 𝒮−1(𝑢(1 − 𝜌)) + 𝒮−1(𝑢2𝒮[𝛶(𝜉, 𝜌)])

            

                                                                                                                                            (4.28)                                   

          {
𝛶 (𝜉, 𝜌)) = 𝒮−1(𝑢(𝜌 − 1)) + 𝒮−1(𝑢2𝒮[𝛶(𝜉, 𝜌)])

𝛶
 
(𝜉, 𝜌)) = 𝒮−1(𝑢(1 − 𝜌)) + 𝒮−1(𝑢2𝒮[𝛶(𝜉, 𝜌)])

 

Now by decomposition method  

𝛶 
0
(𝜉, 𝜌) =  𝜉(𝜌 − 1) 

𝛶0
 
(𝜉, 𝜌)) =  𝜉(1 − 𝜌) 

𝛶  
1
(𝜉, 𝜌) = 𝒮−1(𝑢2𝒮[𝛶0(𝜉, 𝜌)]),    𝛶

 
1
(𝜉, 𝜌) =

𝜉3

3!
 (𝜌 − 1)  

𝛶1
 
(𝜉, 𝜌)) =  𝒮−1(𝑢2𝒮[𝛶0(𝜉, 𝜌)]),   𝛶1

 
(𝜉, 𝜌)) =

𝜉3

3!
(1 − 𝜌) 

𝛶 
2
(𝜉, 𝜌) = 𝒮−1(𝑢2𝒮[𝛶1(𝜉, 𝜌)]),    𝛶

 
2
(𝜉, 𝜌) =

𝜉5

3!
 (𝜌 − 1)  

𝛶2
 
(𝜉, 𝜌)) =  𝒮−1(𝑢2𝒮[𝛶1(𝜉, 𝜌)]),   𝛶2

 
(𝜉, 𝜌)) =

𝜉5

5!
(1 − 𝜌) 

𝛶 
3
(𝜉, 𝜌) = 𝒮−1(𝑢2𝒮[𝛶2(𝜉, 𝜌)]),    𝛶

 
3
(𝜉, 𝜌) =

𝜉7

3!
 (𝜌 − 1)  

𝛶3
 
(𝜉, 𝜌)) =  𝒮−1(𝑢2𝒮[𝛶3(𝜉, 𝜌)]),   𝛶3

 
(𝜉, 𝜌)) =

𝜉7

5!
(1 − 𝜌) 

Then the solution in the series form will be 

∑𝛶  
𝑖
(𝜉, 𝜌) = 𝛶 

0
(𝜉, 𝜌) +

∞

𝑖=0

𝛶 
1
(𝜉, 𝜌) + 𝛶 

2
(𝜉, 𝜌) + 𝛶 

3
(𝜉, 𝜌) + ⋯ 
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=  𝜉(𝜌 − 1) +
𝜉3

3!
 (𝜌 − 1) +

𝜉5

3!
 (𝜌 − 1) +

𝜉7

3!
 (𝜌 − 1) + ⋯ 

Similarly, for 𝛶 
 
(𝜉, 𝜌) 

=  𝜉(1 − 𝜌) +
𝜉3

3!
(1 − 𝜌) +

𝜉5

5!
(1 − 𝜌) +

𝜉7

5!
(1 − 𝜌) +⋯ 

And the exact solution is given as 

𝛶 
 
(𝜉, 𝜌) = (𝜌 − 1)𝑠𝑖𝑛ℎ𝑡 and 𝛶 

 
(𝜉, 𝜌) = (1 − 𝜌)𝑠𝑖𝑛ℎ𝑡 

 

  

Example.No.4.3 

Consider the following fuzzy Volterra integro-differential equation 

{
  
 

  
 
𝛶(1)(𝜉, 𝜌) = (𝜌 + 1)(1 + 𝜉) + ∫𝛶(𝑡, 𝜌)𝑑𝑡

𝜉

0

𝛶
(1)
(𝜉, 𝜌) = (𝜌 − 2)(1 + 𝜉) + ∫𝛶(𝑡, 𝜌)𝑑𝑡

𝜉

0

 

𝛶(1)(0) = 0 = 𝛶
(1)
(0); 0 ≤ 𝜌 ≤ 1, 0 ≤ 𝑡 ≤ 𝜉,    𝜉 ∈ [0,1] 

                                                                                                                (4.29) 
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Applying sumudu transform on both sides of the equation (4.29) 

       

{
  
 

  
 
𝒮(𝛶(1)(𝜉, 𝜌)) = 𝒮((𝜌 + 1)(1 + 𝜉)) + 𝒮[∫𝛶(𝑡, 𝜌)]𝑑𝑡

𝜉

0

𝒮(𝛶
(1)
(𝜉, 𝜌)) = 𝒮((𝜌 − 2)(1 + 𝜉)) + 𝒮[∫𝛶(𝑡, 𝜌)]𝑑𝑡

𝜉

0

 

                     (4.30) 

                       {

1

𝑢
𝒮(𝛶 (𝜉, 𝜌)) −

1

𝑢
𝒮(𝛶 (0, 𝜌) = 𝒮((𝜌 + 1)(1 + 𝜉) + 𝑢𝒮[𝛶(𝜉, 𝜌)]

1

𝑢
𝒮(𝛶

 
(𝜉, 𝜌)) −

1

𝑢
𝒮(𝛶

 
(0, 𝜌) = 𝒮((𝜌 + 1)(1 + 𝜉) + 𝑢𝒮[𝛶(𝜉, 𝜌)]

 

Arranging the equation (4.30) 

                       {
𝒮(𝛶 (𝜉, 𝜌)) = 𝑢(𝜌 + 1) + 𝑢2(𝜌 + 1) + 𝑢2𝒮[𝛶(𝜉, 𝜌)]

𝒮(𝛶
 
(𝜉, 𝜌)) = 𝑢(𝜌 − 2)+𝑢2(𝜌 − 2) + 𝑢2𝒮[𝛶(𝜉, 𝜌)]

 

                                                              (4.31) 

Taking the inverse sumudu transform of (4.31) 

                           {
𝛶  (𝜉, 𝜌)) = 𝒮−1(𝑢(𝜌 + 1)) + 𝒮−1(𝑢2(𝜌 + 1) + 𝒮−1(𝑢2𝒮[𝛶(𝜉, 𝜌)])

𝛶
 
(𝜉, 𝜌)) = 𝒮−1(𝑢(𝜌 − 2)) + 𝒮−1(𝑢2(𝜌 − 2) + 𝒮−1(𝑢2𝒮[𝛶(𝜉, 𝜌)])

 

Now by decomposition method   

𝛶 
0
(𝜉, 𝜌) =  𝜉(𝜌 + 1) +

𝜉2

2!
(𝜌 + 1) 

𝛶0
 
(𝜉, 𝜌)) =  𝜉(𝜌 − 2) +

𝜉2

2!
(𝜌 − 2) 

𝛶 
1
(𝜉, 𝜌) = 𝒮−1(𝑢2𝒮[𝛶0(𝜉, 𝜌)]),    𝛶

 
1
(𝜉, 𝜌) =

𝜉3

3!
 (𝜌 + 1) + 

𝜉4

4!
(𝜌 + 1) 

𝛶1
 
(𝜉, 𝜌)) =  𝒮−1(𝑢2𝒮[𝛶0(𝜉, 𝜌)]),   𝛶1

 
(𝜉, 𝜌)) =

𝜉3

3!
(𝜌 − 2) +

𝜉4

4!
(𝜌 − 2) 

𝛶  
2
(𝜉, 𝜌) = 𝒮−1(𝑢2𝒮[𝛶1(𝜉, 𝜌)]),    𝛶

 
2
(𝜉, 𝜌) =

𝜉5

5!
 (𝜌 + 1) + 

𝜉6

6!
(𝜌 + 1) 

𝛶2
 
(𝜉, 𝜌)) =  𝒮−1(𝑢2𝒮[𝛶1(𝜉, 𝜌)]),   𝛶2

 
(𝜉, 𝜌)) =

𝜉5

5!
 (𝜌 − 2) + 

𝜉6

6!
(𝜌 − 2) 

𝛶  
3
(𝜉, 𝜌) = 𝒮−1(𝑢2𝒮[𝛶2(𝜉, 𝜌)]),    𝛶

 
3
(𝜉, 𝜌) =

𝜉7

7!
 (𝜌 + 1) + 

𝜉8

8!
(𝜌 + 1) 

𝛶3
 
(𝜉, 𝜌)) =  𝒮−1(𝑢2𝒮[𝛶3(𝜉, 𝜌)]),   𝛶3

 
(𝜉, 𝜌)) =

𝜉7

7!
 (𝜌 − 2) + 

𝜉8

8!
(𝜌 − 2) 
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Then the solution in the series form will be 

∑𝛶  
𝑖
(𝜉, 𝜌) = 𝛶 

0
(𝜉, 𝜌) +

∞

𝑖=0

𝛶 
1
(𝜉, 𝜌) + 𝛶 

2
(𝜉, 𝜌) + 𝛶 

3
(𝜉, 𝜌) + ⋯ 

=  𝜉(𝜌 + 1) +
𝜉2

2!
(𝜌 + 1) +

𝜉3

3!
 (𝜌 + 1) + 

𝜉4

4!
(𝜌 + 1) +

𝜉5

5!
 (𝜌 + 1) + 

𝜉6

6!
(𝜌 + 1)

𝜉7

7!
 (𝜌 + 1)

+ 
𝜉8

8!
(𝜌 + 1) + ⋯                                                                                                      (4.32) 

Similarly, for 𝛶 
 
(𝜉, 𝜌) 

= 𝜉(𝜌 − 2) +
𝜉2

2!
(𝜌 − 2) +

𝜉3

3!
 (𝜌 − 2) + 

𝜉4

4!
(𝜌 − 2) +

𝜉5

5!
 (𝜌 − 2) + 

𝜉6

6!
(𝜌 − 2)

𝜉7

7!
 (𝜌 − 2)

+ 
𝜉8

8!
(𝜌 − 2) + ⋯                                                                                                      (4.33) 

 And the exact solution is given as, 

𝛶 (𝜉, 𝜌) = (𝜌 + 1)(𝑒𝑥 − 1) and 𝛶 
 
(𝜉, 𝜌) = (𝜌 − 2)(𝑒𝑥 − 1) 

 

Example.No.4.4 

Consider a Volterra integro-differential equation  
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𝛶(2)(𝜉, 𝜌) = 𝑓(𝜉, 𝜌) − ∫(𝜉 − 𝑡)𝛶(𝑡, 𝜌)𝑑𝑡

𝜉

0

 

                                                                                                                                            (4.34) 

With conditions,  

𝑢(0, 𝜌) = (𝜌 + 1,3 − 𝜌);   𝑢(1)(0, 𝜌) = (𝜌, 2 − 𝜌) 

   𝜆 = 1, 0 ≤ 𝑡 ≤ 𝜉, 0 ≤ 𝜌 ≤ 1,𝐾(𝜉, 𝑡) = (𝜉 − 𝑡),  

Solution: 

             To solve Equation (4.34) for fuzzy-integro differential 

                                  

{
  
 

  
 
𝛶(2)(𝜉, 𝜌) = 𝑓(𝜉, 𝜌) − ∫(𝜉 − 𝑡)𝛶(𝑡, 𝜌)𝑑𝑡

𝜉

0

𝛶(2)(𝜉, 𝜌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑓(𝜉, 𝜌) − ∫(𝜉 − 𝑡)𝛶(𝑡, 𝜌)𝑑𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜉

0

  

                                                                                                                                            (4.35)   

 

{
  
 

  
 
𝛶(2)(𝜉, 𝜌) = (𝜌 + 2)𝜉 − ∫(𝜉 − 𝑡)𝛶(𝑡, 𝜌)𝑑𝑡

𝜉

0

𝛶(2)(𝜉, 𝜌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (4 − 𝜌)𝜉 − ∫(𝜉 − 𝑡)𝛶(𝑡, 𝜌)𝑑𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜉

0

 

                                                                                                                                            (4.36) 

Applying sumudu transform on both sides of equation (4.36) 

             

{
  
 

  
 
𝒮 (𝛶(2)(𝜉, 𝜌)) = 𝒮((𝜌 + 2) − 𝒮∫(𝜉 − 𝑡)𝛶(𝑡, 𝜌)𝑑𝑡

𝜉

0

𝒮(𝛶(2)(𝜉, 𝜌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) = 𝒮((4 − 𝜌) − 𝒮∫(𝜉 − 𝑡)𝛶(𝑡, 𝜌)𝑑𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜉

0

 

                                                                                                                                            (4.37) 

This will give us  
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{
  
 

  
 1

𝑢2
𝒮(𝛶(𝜉, 𝜌) −

1

𝑢2
𝛶(0, 𝜌) −

1

𝑢
𝛶(1)(0, 𝜌) = (𝜌2 + 𝜌) − 𝑢𝒮∫(𝜉 − 𝑡)𝛶(𝑡, 𝜌)𝑑𝑡

𝜉

0

1

𝑢2
𝒮(𝛶(𝜉, 𝜌) −

1

𝑢2
𝛶(0, 𝜌) −

1

𝑢
𝛶(1)(0, 𝜌) = (5 − 𝜌) − 𝑢𝒮∫(𝜉 − 𝑡)𝛶(𝑡, 𝜌)𝑑𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜉

0

 

                                                                                                                                            (4.38) 

  After simplification,    

                   {
𝒮 (𝛶(𝜉, 𝜌)) = 𝑢3(𝜌 + 2) + 𝑢𝜌 + (𝜌 + 1 + 𝑢4𝒮 (𝛶(𝜉, 𝜌))           

𝒮(𝛶(𝜉, 𝜌)) = 𝑢3(4 − 𝜌)) + 𝑢(2 − 𝜌) + (3 − 𝜌) + 𝑢4𝒮(𝛶(𝜉, 𝜌))
 

                                                                                                                                            (4.39) 

Applying inverse sumudu transform on (4.39) 

{
𝛶(𝜉, 𝜌) =  𝒮−1(𝑢3(𝜌 + 2) +  𝒮−1(𝑢𝜌) +  𝒮−1(𝜌 + 1) −  𝒮−1(𝑢4𝒮 (𝛶(𝜉, 𝜌))     

𝛶(𝜉, 𝜌) =  𝒮−1(𝑢3(4 − 𝜌) +  𝒮−1(2 − 𝜌) +  𝒮−1(3 − 𝜌) −  𝒮−1( 𝑢4𝒮(𝛶(𝜉, 𝜌))
 

                                                                                                                                            (4.40) 

Now Applying Decomposition method for 𝛶(𝜉, 𝜌), [29] 

   𝛶0 =
𝜉3

3!
(𝜌 + 2) + 𝜉𝜌 + (𝜌 + 1) 

𝛶1 =  𝒮
−1 (𝑢4𝒮(

𝜉3

3!
(𝜌 + 2) + 𝜉𝜌 + (𝜌 + 1))),        𝛶1 =

𝜉7

7!
(𝜌 + 2) +

𝜉5

5!
𝜌 +

𝜉4

4!
(𝜌 + 1) 

𝛶2 = 𝒮
−1 (𝑢4𝒮(

𝜉7

7!
(𝜌 + 2) +

𝜉5

5!
𝜌 +

𝜉4

4!
(𝜌 + 1))   𝛶2 =

𝜉11

11!
(𝜌 + 2) +

𝜉9

9!
𝜌 +

𝜉8

8!
(𝜌 + 1) 

Similarly, we can find 𝛶3(𝜉, 𝜌), 𝛶4(𝜉, 𝜌), …. 

∑𝛶𝑖(𝜉, 𝜌)

∞

𝑖=0

= 𝛶0(𝜉, 𝜌) + 𝛶1(𝜉, 𝜌) + 𝛶2(𝜉, 𝜌)+. . .. 

                                                          =  (𝜉 +
𝜉5

5!
+
𝜉9

9!
+ ⋯ . . ) 𝜌 + (1 +

𝜉4

4!
+
𝜉8

8!
+ ⋯ . . ) (𝜌 + 1) 

                                                           + (
𝜉3

3!
+
𝜉7

7!
+
𝜉11

11!
… . . ) (𝜌 + 2) + ⋯ 

                                                                                                                                           (4.41) 

Now for 𝛶(𝜉, 𝜌) 

𝛶0 =
𝜉3

3!
(4 − 𝜌) + 𝜉(2 − 𝜌) + (3 − 𝜌) 
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                                           𝛶1 = 𝒮−1( 𝑢4𝒮 (
𝜉

3!
(4 − 𝜌) + 𝜉(2 − 𝜌) + (3 − 𝜌)), 

                                           𝛶1 =
𝜉7

7!
(4 − 𝜌) +

𝜉5

5!
(2 − 𝜌) +

𝜉4

4!
(3 − 𝜌) 

                                           𝛶2 = 𝒮
−1( 𝑢4𝒮 (

𝜉7

7!
(4 − 𝜌) +

𝜉5

5!
(2 − 𝜌) +

𝜉4

4!
(3 − 𝜌)), 

         𝛶2 =
𝜉11

11!
(4 − 𝜌) +

𝜉9

9!
(2 − 𝜌) +

𝜉8

8!
(3 − 𝜌) 

Similarly, for 𝛶𝑖(𝜉, 𝜌) 

∑ 𝛶𝑖(𝜉, 𝜌)

∞

𝑖 = 0

= 𝛶1(𝜉, 𝜌) + 𝛶2(𝜉, 𝜌) + 𝛶3(𝜉, 𝜌)+. . . . 

= (𝜉 +
𝜉5

5!
+
𝜉9

9!
+ ⋯ . . ) (2 − 𝜌) + (1 +

𝜉4

4!
+
𝜉8

8!
+ ⋯ . . ) (3 − 𝜌) 

+(
𝜉3

3!
+
𝜉7

7!
+
𝜉11

11!
… . . ) (4 − 𝜌) + ⋯ 

And the exact solution is given as   

𝛶(𝜉; 𝜌) = (𝜌 + 2).
1

2
(𝑠𝑖𝑛ℎ𝜉 − 𝑠𝑖𝑛𝜉) + (𝜌 + 1).

1

2
(𝑐𝑜𝑠𝜉 + 𝑐𝑜𝑠ℎ𝜉) + (𝜌)(𝑠𝑖𝑛𝜉 + 𝑠𝑖𝑛ℎ𝜉) 

𝛶(𝜉; 𝜌) = (4 − 𝜌).
1

2
(𝑠𝑖𝑛ℎ𝜉 − 𝑠𝑖𝑛𝜉) + (3 − 𝜌).

1

2
(𝑐𝑜𝑠𝜉 + 𝑐𝑜𝑠ℎ𝜉)

+ (2 − 𝜌)(𝑠𝑖𝑛𝜉 + 𝑠𝑖𝑛ℎ𝜉)                                                                    

           0 ≤ 𝜌 ≤ 1 

        (4.43) 

The graphical interpretation of the above exact solution is given below which is showing the 

behavior of our solution. [16,21,26] 
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Example.4.5 

Consider a nonlinear fuzzy Volterra integral differential equation 

                                    𝛶(1)(𝜉, 𝜌) = 𝑓(𝜉, 𝜌) − ∫𝛶2(𝑡, 𝜌)𝑑𝑡

𝜉

0

                   

                                                                                                                                            (4.43) 

With conditions, 𝛶(0, 𝜌) = (0,0), where 

                          𝜆 = 1, 0 ≤ 𝑡 ≤ 𝜉, 0 ≤ 𝜌 ≤ 1, 𝐾(𝜉, 𝑡) = 1, i.e 

                                                  𝑓(𝜉, 𝜌) = (𝜌, 7 − 𝜌) 

Solution: 

Applying sumudu decomposition on both sides, 

             To solve Equation (4.43), for fuzzy-integro differential 
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{
  
 

  
 
𝛶(1)(𝜉, 𝜌) = 𝑓(𝜉, 𝜌) − ∫𝛶2(𝑡, 𝜌)𝑑𝑡

𝜉

0

𝛶(1)(𝜉, 𝜌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑓(𝜉, 𝜌) − ∫𝛶2(𝑡, 𝜌)𝑑𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜉

0

                                         (4.44) 

                                             

{
  
 

  
 
𝛶(1)(𝜉, 𝜌) = 𝜌 − ∫𝛶2(𝑡, 𝜌)𝑑𝑡

𝜉

0

     

𝛶(1)(𝜉, 𝜌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 7 − 𝜌 − ∫𝛶2(𝑡, 𝜌)𝑑𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜉

0

                                          (4.45) 

Applying sumudu transform on both sides of equation (4.45) 

           

{
  
 

  
 
𝒮(𝛶(1)(𝜉, 𝜌) = 𝒮(𝜌) −  𝒮 ∫𝛶2(𝑡, 𝜌)𝑑𝑡

𝜉

0

     

𝒮(𝛶(1)(𝜉, 𝜌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝒮(7 − 𝜌) − 𝒮∫𝛶2(𝑡, 𝜌)𝑑𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜉

0

       

                                                                                                                                           (4.46) 

This will give us 

                                              {

1

𝑢
𝒮(𝛶(𝜉, 𝜌) −

1

𝑢
𝛶(0, 𝜌) = (𝜌) − 𝑢𝒮(𝛶2(𝜉, 𝜌)       

1

𝑢
𝒮(𝛶(𝜉, 𝜌) −

1

𝑢
𝛶(0, 𝜌) = (7 − 𝜌) − 𝑢𝒮(𝛶2(𝜉, 𝜌)

 

                                                                                                                                            (4.47) 

                                          {
𝒮(𝛶(𝜉, 𝜌) = 𝑢𝜌 −  𝑢2𝒮(𝛶2(𝜉, 𝜌)            

𝒮(𝜉(𝜉, 𝜌) = 𝑢(7 − 𝜌) −  𝑢2𝒮(𝛶2(𝜉, 𝜌) 
  

                                                                                                                                            (4.48) 

Applying inverse sumudu transform 

                                          {
𝛶(𝜉, 𝜌) =  𝒮−1(𝑢𝜌) −  𝒮−1(𝑢2𝒮 (𝛶2(𝜉, 𝜌))              

𝛶(𝜉, 𝜌) =  𝒮−1 (𝑢(7 − 𝜌))  − 𝒮−1( 𝑢2𝒮(𝛶2(𝜉, 𝜌))
 

                                                                                                                                            (4.49) 

For nonlinear portion, 
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𝐴0 = 𝛶𝑂
2    ,        𝐴1 = 2𝛶𝑂

 𝛶1  

𝐴2 = 2𝛶𝑂
 𝛶2 + 𝛶1

2 ,   𝐴3 = 2𝛶𝑂
 𝛶1 + 2𝛶1𝛶2

 
 

For 𝛶(𝜉, 𝜌) 

                                          𝛶0(𝜉, 𝜌) = 𝜉𝜌     

𝛶1(𝜉, 𝜌) =  𝒮
−1(  𝑢2𝒮(𝑘(𝜉 − 𝑡)𝒮(𝐴0(𝜉)) 

𝛶1(𝜉, 𝜌) =  𝒮
−1(  𝑢2𝒮(𝑘(𝜉 − 𝑡)𝒮((𝜉𝜌)2) 

𝛶1(𝜉, 𝜌) =
𝜉4

12
𝜌 

𝛶2(𝜉, 𝜌) =  𝒮−1(  𝑢2𝒮(𝑘(𝜉 − 𝑡)𝒮(𝐴1(𝜉)) 

𝛶2(𝜉, 𝜌) =  𝒮−1(  𝑢2𝒮(𝑘(𝜉 − 𝑡)𝒮(2𝛶𝑂
 𝛶1) 

𝛶2(𝜉, 𝜌) =
𝜉7

252
𝜌7 

Similarly, we can find 𝛶3(𝜉, 𝜌), 𝛶4(𝜉, 𝜌), … .. 

∑𝛶𝑖(𝜉, 𝜌)

∞

𝑖=0

= 𝛶0(𝜉, 𝜌) + 𝛶1(𝜉, 𝜌) + 𝛶2(𝜉, 𝜌)+. . ..  

                                                       = 𝜉𝜌 +
𝜉4

12
𝜌 +

𝜉7

252
𝜌7+. . . . 

                                                                                                                                            (4.50) 

Similarly, for 𝛶𝑖(𝜉, 𝜌) 

𝛶0(𝜉, 𝜌) = 𝜉(7 − 𝜌) 

𝛶1(𝜉, 𝜌) = 𝒮
−1(  𝑢2𝒮(𝑘(𝜉 − 𝑡)𝒮(𝐴0(𝜉) 

𝛶1(𝜉, 𝜌) = 𝒮
−1(  𝑢2𝒮(𝑘(𝜉 − 𝑡)𝒮((𝜉(7 − 𝜌)2) 

𝛶1(𝜉, 𝜌) =
𝜉4

12
(7 − 𝜌)2 

𝛶2(𝜉, 𝜌) = 𝒮
−1(  𝑢2𝒮(𝑘(𝜉 − 𝑡)𝒮(𝐴1(𝜉) 

𝛶2(𝜉, 𝜌) = 𝒮−1(  𝑢2𝒮(𝑘(𝜉 − 𝑡)𝒮(2𝛶0𝛶1) 

𝛶1(𝜉, 𝜌) =
𝜉7

252
(7 − 𝜌)3 
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                                     ∑ 𝛶𝑖(𝜉, 𝜌)

∞

𝑖 = 0

= 𝛶1(𝜉, 𝜌) + 𝛶2(𝜉, 𝜌) + 𝛶3(𝜉, 𝜌)+. . . .          

= 𝜉(7 − 𝜌) +
𝜉4

12
(7 − 𝜌)2 +

𝜉7

252
(7 − 𝜌)3+. . .                                           (4.51)  
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CONCLUSION 

Usually it’s difficult to solve fuzzy integro-differential equations analytically. Most probably it’s 

required to obtain the approximate solutions. In this thesis we developed a numerical technique 

like sumudu decomposition method for finding the solution of linear and non-linear fuzzy Volterra 

integro-differential equations.  A general method for solving FVIDE is developed. This technique 

proved reliable and affective from achieved results. It gives fast convergence because by utilizing 

less number of iterations we get approximate as well as exact solution.     
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