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ABSTRACT 

A new non-stationary four-point binary approximating subdivision technique with the shape 

control parameter has been analysed. The proposed technique is the counter part of stationary 

four-point binary technique [13]. The resulting curve have smoothness C
3

 continuous for the 

wider range of shape control parameter. The role of the shape control parameter has been 

depicted using the square form of control point. 
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ABSTRACT 

A new non-stationary four-point binary approximating subdivision technique with the shape 

control parameter has been analysed. The proposed technique is the counter part of stationary 

four-point binary technique [13]. The resulting curve having smoothness C3
 continuous for the 

wider range of shape control parameter. The role of the shape control parameter has been 

depicted using the square form of control point as shown in Figure 3.1. 
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Chapter # 1 

Introduction 

               Geometric modelling is the heart of CG and CAGD and covers a wide range of 

applications. Computer Aided Geometric Design (CAGD) is a branch of applied mathematics 

that designs smooth curves/ surfaces with algorithms. The CAGD field compiles the visual 

display. Computer Aided Geometric Design (CAGD) studies the design and handling of curves 

and surfaces provided by a set of data points in particular. The development of new geometric 

objects and shapes is an important task in the field of Computer Aided Geometric Design 

(CAGD), Computer Graphics, Computer Animation Industries and Image processing etc. We 

use a very important subdivision tool to create different geometric objects and shapes in 

Computer Aided Geometric Design. Algorithms for subdivisions are best suited for computer 

applications. Subdivision develops different types of smooth curves and surfaces using refining 

rules by subdividing them from a set of discrete control points. 

           Because of the development of computer graphics, G. de Rham studied subdivision 

Scheme (SS) in 1947. Subdivision is a calculation that generates smooth bends and surfaces as 

a successive arrangement of refined control polygons. The current polygon is included to new 

points at each refining level and the original points continue to remain or are thrown away 

across all resultant control polygons. The amount of points placed from level 𝑘 to level 𝑘 + 1 

between two successive points is termed also the scheme’s arity. If there are 2,3,4 ,…, n 

inserted then the SS are known as binary, ternary,…, n-ary respectively. 

          Subdivision is also a technique for construction of smooth curves / surfaces, which first 

applied as an extension of splines to arbitrary topology control nets. Simplicity and flexibility 

of the subdivision algorithms make them suitable for many interactive computer graphics 

applications. Purity of the subdivision lies in the construction of smooth curves / surfaces. 

However, the uses such as special aspects and animation need generation and construction of 

composite geometric shapes, which, like real world geometry, carry detail at many scales. 

        An important characteristic of these schemes is that they are local. There is no need to 

solve a global equation system. Although the mathematical surface analysis resulting from 

subdivision algorithms is not always easy. SS takes the attention of scholars and researchers in 

this field because of its simplicity and ease of understanding. In the last two decades, many 

papers have been published. 

        There will be a lot of new CAGD applications in the future. In CAGD, the most frequently 

used and attractive scheme is SS that draw different types of curves and surfaces. Iterative 

refinements use the SS to build smooth curves and surfaces from a set of specific CP. SS have 

been valued in many areas, such as image processing, computer graphics and computer 

animation, due to their clarity and simplicity. Subdivision systems can be implemented easily 

and are suitable for computer applications. In general, we can classify subdivision scheme 

according to the following standards: 



2 
 

i. By the number of control grid edges such as T-grid, Q-grid, H- grid etc. 

ii. By topological grid splitting style; i.e., point split and face split. 

iii. Limit curve and control polygon like approximation subdivision and interpolatory 

subdivision by the relationship of limit surface, 

iv. By the continuity and smoothness of limit surface for instance 𝐶0 and up to 𝐶𝑚 . 

v. Uniform subdivision and non-uniform subdivision elements in the same layer. 

vi. Like stationary subdivision and dynamic subdivision by the relationship of geometric 

rule to subdivision layer. 

vii. The number of control points inserted between two consecutive points at the level 𝑘 +

1 such as; binary, ternary ,…, n-array. 

1.1 Subdivision Schemes (SS) 

The SS preliminaries are discussed as follows in this section. 

1.1.1 Continuous function 

A function f is continuous at a point  𝑥 = 𝑎, when  

➢ The function f is defined at “a”. 

➢ The limit of f as x approaches  “a” from the right-hand and left-hand limits exists and is the 

same. 

➢ The limit of f is equal to f (a)  when x approaches “a”.  

 1.1.2 Parameter 

A variable on which a collection of various cases is recognized by the number of possible 

values is known as parameter. Any equation write in the form of parameters is known as 

parameter equation. 

OR 

A parameter is a quantity that affects a mathematical object’s output or behaviour; but is 

considered to be constant. 

Example 

In the set of equations 𝑥 = 2𝛽 + 1 and 𝑦 = 𝛽2 + 2, 𝛽 is called parameter. 

1.1.3 Tension Parameter 

Tension parameter is used to control the curve shape. 
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1.1.4 Iterative  

An iterative method is a mathematical procedure that uses an initial guess to generate a 

sequence of improving an approximate solution for a class of problem in which the nth 

approximation is derived from the previous ones. 

1.1.5 Refinement 

A refinement of a cover is a cover such that every element is a subset of an element. 

1.1.6 Sequence 

A sequence is an arrangement of numbers written in definite order according to some specific 

rule. 

1.1.7 Increasing sequence 

Consider 𝑎𝑛 is a sequence of nth term, so if 𝑎𝑛+1 >  𝑎𝑛 for all 𝑛, the sequence is said to be 

increasing. This means that for all 𝑛, we have (𝑎𝑛+1)(𝑎𝑛) > 1.      

1.1.8 Decreasing sequence 

Consider 𝑎𝑛 is a sequence of nth term, so if 𝑎𝑛+1 <  𝑎𝑛 for all 𝑛, the sequence is said to be 

decreasing. This means that for all 𝑛, we have (𝑎𝑛+1)(𝑎𝑛) < 1.      

1.1.9 Control Point 

A control point is a member of a set of points used to determine the shape of a spline curve or 

more generally, a surface or higher dimensional object in computer aided geometric design. 

1.1.10 Control Polygon 

Control polygon is the sequence of control points in space that is usually used to control an 

object’s shape. 

1.1.11 Ratio test 

Let ∑ 𝑎𝑛
∞
1  be a series of positive terms and suppose that lim

𝑛→∞

𝑎𝑛+1

𝑎𝑛
= 𝐿, 

where 𝐿 is a real number or non-negative numbers 

➢ If 𝐿 < 1, the series  ∑ 𝑎𝑛
∞
1  converges. 

➢ If 𝐿 > 1, the series  ∑ 𝑎𝑛
∞
1  diverge. 

➢ If 𝐿 = 1 the test fails to determine convergence or divergence of the series. 

1.1.12 Limit curve 

In mathematics, a limit is the value approached by a function as the input approaches a specific 

value. 
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1.1.13 Asymptotic 

Asymptotical is a line approaching a curve, but never touching it. A curve and a line 

approaching but not intersecting are examples of a curve and a line asymptotic to each other. 

1.1.14 Asymptotic equivalent 

Asymptotic equivalent is a function whose limit exists and is equal to 1. 

1.1.15 Subdivision 

A subdivision is a technique of continually refining CP 𝑞0 to produce a pattern on ever 

increasingly finer polygons 𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, ….,thus  approaching a polygon limit to a curve. 

𝑞 = lim
𝑘→∞

𝑞𝑘. 

i-e, subdivision characterizes a smooth curve now as the limit of a successive refining 

sequence. 

1.2 Types of SS 

 Types of SS are: 

➢ Stationary SS and non-stationary SS  

➢ Approximating SS and interpolating SS 

1.2.1 Stationary Subdivision Scheme 

If in each refining step the mask remains unchanged, it is called a stationary subdivision scheme.  

1.2.2 Non-stationary Subdivision Scheme 

If in each refining step the mask changes again and again, it is called a non-stationary SS.  

1.2.3 Interpolating Subdivision Scheme 

        For interpolating curve SS, new vertices are calculated and added to the old polygons at 

each time of subdivision and the limit curve passes through all the vertices of the original CP. 

        Due to their interpolation property, Interpolation SS are more attractive than 

approximation schemes in computer aided geometric design. The interpolation subdivisions 

are also more users friendly. 

1.2.4 Approximating Subdivision Scheme 

If new points are generated at each refinement level then it is called approximating SS. 
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1.3 Application of Subdivision Scheme 

           Computer Aided Geometric Design (CAGD) plays important rolls in providing 

techniques and algorithms for mathematical description of 2D shapes. CAGD has its influence 

in many fields like geology and medical science as it has importance in geographic information 

systems and image processing (IP) respectively. Computer Aided Geometric Design (CAGD) 

is mostly used in many engineering fields such as aerospace, automotive design (AD), 

industrial design (ID), Computer Aided Manufacturing (CAM) in numerical analysis, electrical 

and mechanical engineering. In the emerging era of computer science and engineering, it 

provides benefits in animation, simulation behaviour, and graphical view of large data and 

reconstruction of 3D designs form their diagrams and also fitting 3D models for scanned 3D-

prints.  

       Also, Computer graphics provides main ingredient in geometric modelling and analysis 

which is used in numerical treatment of PDE’s. The important applications of CAGD are 

modelling of 3D shapes in engineering and technology like the shapes of airplanes, ships and 

cars, controlling and planning surgery of human body, relief maps in cartography for the space 

objects and drawing machine charts, creating images in the film industries like cartoon, 

television and advertising, production and quality control, representation products and 

visualizing of discrete sets of data points. 

1.4 Literature Review 

      Subdivision is an algorithm technique that generates smooth curves and surfaces as a 

sequence of refined control polygons in succession. Hormann and Sabin [1] introduce the 

family and determine how the support, the Holder regularity, the accuracy set, the degree of 

polynomials spanning the limit curves and the behaviour of artefact vary with the parameter 

identifying the family members. The high order members of that family achieve higher 

polynomial reproduction degrees. Dyn et al. [2] conditions are partly algebraic and easy to 

check by considering the SS symbol, but also relate to the scheme’s parameterization. The four-

point ternary interpolatory SS of Cai [3] is analysed with a tension parameter. It is shown that 

the resulting curve is C2 for a certain range of the tension parameter. 

       Hermandez et al. [4] shows that the subdivision curve converges and is continuous. In 

addition, starting with the initial polygon’s chord-length parameterization. We get a 

subdivision curve parameterized by an arc-length multiple. The weights of the masks of the 

scheme are defined by Daniel and Shummugaraj [5] in terms of some values of trigonometric 

B-spline functions. Mustafa et al. [6] proposed and analysed the m-point approximating SS 

with single parameter where 𝑚 > 1. Compared to the existing binary and ternary SS, 

smoothness of schemes is higher.  

       Zheng and Peng [7] presented an explicit formula that unifies the mask of ternary 

interpolation and approximation of SS (2𝑛 − 1) points. Mustafa and Najma [8] generate an 

approximation property based on local cubic polynomial fitting of the four-point interpolatory 

curve subdivision. This shows once the scheme is applied to develop a limit curve interpolating 
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irregularly spaced points sampled from a curve in any space dimension with a constrained 

fourth derivative and the approved parameterization is chordal; the fourth order is the accuracy. 

Augsdorfer et al. [9] showed how subdivision can be divided into stages and how these stages 

can be manipulated in different ways using the four-point scheme. 

       Deng and Guozhao, [10] developed an in-centre SS for curve interpolation. Siddiqi and 

Rehan [11] improved the binary 4-point approximating subdivision scheme by introducing a 

global tension parameter. A new Subdivision Scheme for corner cutting was also proposed, 

which generates a limiting curve of C1 continuity. To examine the order of the derivative 

countinuity of the two SS, the Laurent polynomial method was used. Siddiqi and Rehan [12] 

presented ternary three-point approximation of a non-stationary approximation SS that 

generates a limiting curve of the C2 family. The proposed scheme may be regarded as a non-

stationary counterpart of the stationary ternary three-point scheme. Kim et al. [13] proposed a 

binary subdivision scheme with four points that generates a smooth C3-continuous limiting 

curve. 

         With the help of local cubic polynomial fitting, Floater [14] derived an approximation 

property of four-point interpolatory curve subdivision. Hao and Renhong [15] derived and 

investigated 6-point binary subdivision approximating scheme and showed that the scheme is 

simple and elegant. Sharon and Dyn [16] presented interpolating data consisting of univariate 

functions by repeated refinements along equidistant parallel lines in a bivariate subdivision 

scheme. A surface passing through a given set of parametric curves could be practiced by the 

present method. Pan et al. [17] proposed a combined subdivision approximation and 

interpolation scheme. The relationship between the approximate and the interpolating 

subdivision is precisely derived from geometric rules operations. 

        Siddiqi and Younis [18] used the general recursion formula to create an algorithm for m-

point binary point approximating SS. Ashraf and Mustafa [19] for even integer > 2  is given a 

generalized non-stationary subdivision approximating 4-point b-ary. By using Lagrange 

identities, Mustafa and Bari [20] developed a new family of non-stationary ternary 

interpolating subdivision schemes. The proposed non-stationary schemes are equivalent to 

converging stationary schemes asymptotically. Tan et al. [21] proposed a new four-point shape 

preserving C3 subdivision technique. 

           A new five-point binary approximating subdivision technique with two parameters is 

developed by Tan et al. [22] to demonstrate curve flexibility. In a case, the five-point scheme 

is transformed into a four–point scheme that generates continuous limit curves of C3. Tan et al. 

[23] introduced a new binary SS of five-points with high continuity and preservation of 

convexity. They showed that the limit curves for the certain range of the parameter are Ck 

(𝑘 = 0,1, … . ,7). Siddiqi et al. [23] four and five points binary non-stationary SS was 

developed using hyperbolic B-spline basis functions. The main speciality of the hyperbolic SS 

is that hyperbolas and parabolas can be regenerated quite efficiently. Tan et al. [24] developed 

a non-stationary three-point binary approximating SS that could give a vast range of continuous 

C3 smooth curves using the discrete CP. 
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   A new binary non-stationary four-point approximating SS was implemented in this thesis 

that provides versatility to produce a variation of smooth curves. The smoothness of the SS 

[24] in chapter 2, has been checked which has maximum derivative continuity C3. In Chapter 

3, smoothness of the proposed scheme has been determined which has maximum derivative 

continuity C3. In the end, conclusion has been compiled of the whole thesis. 
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CHAPTER # 2 

A non-stationary binary three-point approximating SS 

2.1 Stationary three-point technique 

              Given the set of zero level CP 𝑞0 = {𝑞0}𝑖∈𝑍, a binary three-point approximating SS for 

curve design provides a set of new points {𝑞𝑖
𝑘+1}𝑖∈𝑍 at  stage 𝑘 + 1 using the following 

subdivision  rules: 

𝑞2𝑖
𝑘+1 = 𝛽1

𝑘𝑞𝑖−1
𝑘 + 𝛽2

𝑘𝑞𝑖
𝑘 + 𝛽3

𝑘𝑞𝑖+1
𝑘  

                                               𝑞2𝑖+1
𝑘+1 = 𝛽3

𝑘𝑞𝑖−1
𝑘 + 𝛽2

𝑘𝑞𝑖
𝑘 + 𝛽1

𝑘𝑞𝑖+1
𝑘 .                             ……..(2.1) 

         Where the coefficients {𝛽𝑗
𝑘}

𝑗=1,2,3
 are selected to meet the relationship  

𝛽1
𝑘 + 𝛽2

𝑘 + 𝛽3
𝑘 = 1. 

           Hassan and Dodgson [9] introduced the form of a stationary binary technique in which 

masks {𝛽𝑗
𝑘}

𝑗=1,2,3
 are 𝛽1

𝑘 = 𝑎, 𝛽2
𝑘 = 1 − 𝑎 − 𝑏, 𝛽3

𝑘 = 𝑏. 

           They found that the scheme is C1-continuos when 𝑏 =
1

4
+ 𝑎, − 

1

8
< 𝑎 <

3

8
 , C2-

continuos when 𝑏 =
1

4
+ 𝑎, 0 < 𝑎 <

1

8
  and C3-continuos when 𝑎 =

1

16
, 𝑏 =

5

16
 . 

         However, the behaviour of the curve is not important to the selection of the values of a 

and b which meet the conditions of minimum C2-continuity this means that the generated 

curves changes in such a small magnitude that there are no significant changes as shown in 

Figure 2.1. 

2.2 A Non-stationary three-point technique 

          A non-stationary three-point AS technique [24] is defined as in the refining rules (2.1), 

where the mask {𝛽𝑖
𝑘} are determined as 

𝛽1
𝑘 = 𝑔(𝛽𝑘+`1), 𝛽2

𝑘 =
3

4
− 2𝑔(𝛽𝑘+`1), 𝛽3

𝑘 = 𝑔(𝛽𝑘+`1) +
1

4
;  𝑔(𝛽𝑘+`1) =

1

2[(𝛽𝑘+1)2−1]
,    …(2.2) 

with  

           𝛽𝑘+1 = √𝛽𝑘 + 6, 𝛽0 ∈ [−6, −5) ∪ (−5, +∞).                                  …………….(2.3) 

       In view of the initial parameter 𝛽0 ∈ [−6, −5) ∪ (−5, +∞), the coefficients {𝛽𝑖
𝑘} can be 

calculated by the above formulae at each different levels. 
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        It should be noted that beginning with any 𝛽0 ≥ −6, this gives 𝛽𝑘 + 6 ≥ 0, ∀𝑘 ∈ 𝑍+, so 

𝛽𝑘+1 is well-establish. A vast range of definitions enables to obtain significant variations in 

the shapes of the curve as shown in Figure 2.1. 

2.2.1 Remark 1. From the Figure 2.1, we can see that the curve changes significantly at first 

as the initial values of  𝛽0 increases in its range and then the curve tends to approximate the 

defined polygon as  𝛽0 → +∞. 

2.2.2 Remark 2. We know from (2.3): 

 If 𝛽0 = 3, then 𝛽𝑘 = 3, ∀ 𝑘 ∈ 𝑍+, and the sequence {𝛽𝑘}𝑘∈𝑁 is stationary and it retrograde the 

non-stationary SS to the stationary SS. 

That is put k = 0, we get 

𝛽1 = √𝛽0 + 6 

                                                               𝛽1 = √3 + 6 

                                                               𝛽1 = √9 

                                                               𝛽1 = 3. 

Put k = 1, we get 

                                                             𝛽2 = √𝛽1 + 6 

                                                             𝛽2 = √3 + 6 

                                                             𝛽2 = √9 

                                                             𝛽2 = 3. 

Put k = 2, we get 

                                                          𝛽3 = √𝛽2 + 6 

                                                          𝛽3 = √3 + 6 

                                                          𝛽3 = √9 

                                                          𝛽3 = 3. 

Put k = 3, we get 

                                                      𝛽4 = √𝛽3 + 6 

                                                      𝛽4 = √3 + 6 

                                                      𝛽4 = √9 
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                                                      𝛽4 = 3. 

If 𝛽0 > 3, then 𝛽𝑘 > 3, the sequence {𝛽𝑘}𝑘∈𝑁 is decreases strictly and 𝛽𝑘 converges to 3 as 

𝑘 → ∞. 

Now choose 𝛽0 = 4. 

Put k = 0, we get 

                                                         𝛽1 = √𝛽0 + 6 

                                                         𝛽1 = √4 + 6 

                                                         𝛽1 = √10 

                                                         𝛽1 = 3.162278 

Put k = 1, we get 

                                                         𝛽2 = √𝛽1 + 6 

                                                         𝛽2 = √3.162278 + 6 

                                                         𝛽2 = √9.162278 

                                                         𝛽2 = 3.02693 

Put k = 2, we get 

                                                         𝛽3 = √𝛽2 + 6 

                                                         𝛽3 = √ 3.02693 + 6 

                                                         𝛽3 = √9.02693 

                                                         𝛽3 = 3.00448 

Put k = 3, we get 

                                                         𝛽4 = √𝛽3 + 6 

                                                         𝛽4 = √3.00448 + 6 

                                                         𝛽4 = √9.00448 

                                                          𝛽4 = 3.00075 
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Now choose 𝛽0 = 5. 

Put k = 0, we get 

                                                        𝛽1 = √𝛽0 + 6 

                                                        𝛽1 = √5 + 6 

                                                        𝛽1 = √11 

                                                        𝛽1 = 3.31662 

Put k = 1, we get 

                                                        𝛽2 = √𝛽1 + 6 

                                                        𝛽2 = √3.31662 + 6 

                                                        𝛽2 = √9.31662 

                                                        𝛽2 = 3.05231 

Put k = 2, we get 

                                                       𝛽3 = √𝛽2 + 6 

                                                       𝛽3 = √3.05231 + 6 

                                                       𝛽3 = √9.05231 

                                                       𝛽3 = 3.00871 

Put k = 3, we get 

                                                      𝛽4 = √𝛽3 + 6 

                                                      𝛽4 = √3.00871 + 6 

                                                      𝛽4 = √9.00871 

                                                      𝛽4 = 3.00145 
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Now choose 𝛽0 = 6. 

Put k = 0, we get 

                                                               𝛽1 = √𝛽0 + 6 

                                                               𝛽1 = √6 + 6 

                                                               𝛽1 = √12 

                                                               𝛽1 = 3.46410 

Put k = 1, we get 

                                                               𝛽2 = √𝛽1 + 6 

                                                                𝛽2 = √3.46410 + 6 

                                                               𝛽2 = √9.46410 

                                                                𝛽2 = 3.07638 

Put k = 2, we get 

                                                              𝛽3 = √𝛽2 + 6 

                                                             𝛽3 = √3.07638 + 6 

                                                             𝛽3 = √9.07638 

                                                            𝛽3 = 3.01270 

Put k = 3, we get 

                                                           𝛽4 = √𝛽3 + 6 

                                                           𝛽4 = √3.01270 + 6 

                                                          𝛽4 = √9.01270 

                                                          𝛽4 = 3.00212                         

Similarly we can check for 𝛽0 = 7 and so on. 
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If 𝛽0 < 3, then 𝛽𝑘 < 3, the sequence {𝛽𝑘}𝑘∈𝑁 is increases strictly, and 𝛽𝑘 converges to 3 as 

𝑘 → ∞. 

Choose 𝛽0 = 2. 

Put k = 0, we get 

                                                       𝛽1 = √𝛽0 + 6 

                                                       𝛽1 = √2 + 6 

                                                       𝛽1 = √8 

                                                       𝛽1 = 2.828427 

Put k = 1, we get 

                                                     𝛽2 = √𝛽1 + 6 

                                                     𝛽2 = √2.828427 + 6 

                                                     𝛽2 = √8.828427 

                                                     𝛽2 = 2.971267 

Put k = 2, we get 

                                                    𝛽3 = √𝛽2 + 6 

                                                    𝛽3 = √2.971267 + 6 

                                                    𝛽3 = √8.971267 

                                                    𝛽3 = 2.995207 

Put k = 3, we get 

                                                   𝛽4 = √𝛽3 + 6 

                                                   𝛽4 = √ 2.995207 + 6 

                                                   𝛽4 = √8.995207 

                                                   𝛽4 = 2.99920106 
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Now choose 𝛽0 = 1. 

Put k = 0, we get 

                                                      𝛽1 = √𝛽0 + 6 

                                                     𝛽1 = √1 + 6 

                                                     𝛽1 = √7 

                                                     𝛽1 = 2.64575 

Put k = 1, we get 

                                                    𝛽2 = √𝛽1 + 6 

                                                   𝛽2 = √2.64575 + 6 

                                                   𝛽2 = √8.64575 

                                                   𝛽2 = 2.940366 

Put k = 2, we get 

                                                  𝛽3 = √𝛽2 + 6 

                                                  𝛽3 = √2.940366 + 6 

                                                  𝛽3 = √8.940366 

                                                 𝛽3 = 2.990044 

Put k = 3, we get 

                                                𝛽4 = √𝛽3 + 6 

                                                𝛽4 = √2.990044 + 6 

                                                𝛽4 = √8.990044 

                                                𝛽4 = 2.998340 
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Now choose 𝛽0 = 0. 

Put k = 0, we get 

                                                      𝛽1 = √𝛽0 + 6 

                                                      𝛽1 = √0 + 6 

                                                      𝛽1 = √6 

                                                     𝛽1 = 2.4495 

Put k = 1, we get 

                                                   𝛽2 = √𝛽1 + 6 

                                                   𝛽2 = √2.4495 + 6 

                                                  𝛽2 = √8.4495 

                                                  𝛽2 = 2.906802 

Put k = 2, we get 

                                                𝛽3 = √𝛽2 + 6 

                                                𝛽3 = √2.906802 + 6 

                                                𝛽3 = √8.906802 

                                                𝛽3 = 2.984426 

Put k = 3, we get 

                                                𝛽4 = √𝛽3 + 6 

                                               𝛽4 = √ 2.984426 + 6 

                                               𝛽4 = √8.984426 

                                               𝛽4 = 2.99740 

Similarly, we can check for 𝛽0 = −1  and so on. 

Therefore, in the definition domain of any 𝛽0, we always have  

                                                        lim
𝑘→+∞

𝛽𝑘 = 3. 
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2.3 Smoothness Analysis  

In this section, we want to show that, in view of the initial polygon, the SS proposed in section 

2.2 gives a continuous smooth curve of 𝐶3 for any selection of the initial parameter value 𝛽0 

in its definition. To show this, we quote Dyn and Levin’s well-known results [25], which relate 

to the smoothness of a non-stationary technique with its asymptotically equivalent case 

stationary counterpart. 

2.3.1 Theorem. A non-stationary SS defined by the masks in (2.2) is asymptotically 

equivalent to the case stationary technique with masks in (2.1) with 𝛽1
𝑘 =

1

16
, 𝛽2

𝑘 =
5

8
 , 𝛽3

𝑘 =
5

16
. 

C3-continuous limit curves are therefore generated. 

Proof.  In order to prove that the non-stationary scheme converges to a C3-continuous limit 

curves, its second divided difference mask should be obtained. The scheme mask is 

𝑚𝑘 = [𝑔( 𝛽𝑘+1),
1

4
+ 𝑔( 𝛽𝑘+1),

3

4
− 2𝑔( 𝛽𝑘+1),

3

4
− 2𝑔( 𝛽𝑘+1),

1

4
+ 𝑔( 𝛽𝑘+1), 𝑔( 𝛽𝑘+1)] 

Then it turns out that his 1st divided difference masks are                    

                         𝑒(1)
𝑘 = 2 [𝑔( 𝛽𝑘+1),

1

4
,

1

2
− 2𝑔( 𝛽𝑘+1),

1

4
, 𝑔( 𝛽𝑘+1)] 

Then it turns out that his 2nd divided difference masks are                    

                        𝑒(2)
𝑘 = 4 [𝑔( 𝛽𝑘+1),

1

4
− 𝑔( 𝛽𝑘+1),

1

4
− 𝑔( 𝛽𝑘+1), 𝑔( 𝛽𝑘+1)] 

Then it turns out that his 3rd divided difference masks are                    

                       𝑒(3)
𝑘 = 8 [𝑔( 𝛽𝑘+1),

1

4
− 2𝑔( 𝛽𝑘+1), 𝑔( 𝛽𝑘+1)] 

Now, the application of Remark 2 

                      𝑒(3)
∞ = lim

𝑘→+∞
𝑒3

𝑘 = 8 [
1

16
,

1

8
 ,

1

16
] 

Which is only the mask of the third divided differences of the stationary scheme with 

coefficients in (2.1) with 𝛽1
𝑘 =

1

16
, 𝛽2

𝑘 =
5

8
 , 𝛽3

𝑘 =
5

16
, and in [9], Hassan and Dodgson proved 

that in this case the stationary scheme is C3-continuous, the scheme associated with 𝑒3
∞ is C3. 

Now if it’s 

                                                     ∑ ‖𝑒(3)
𝑘 − 𝑒3

∞‖
∞

< +∞+∞
𝑘=0                                 ……… (2.4) 

 

 



17 
 

The two schemes are then equivalent asymptotically. And we can conclude that the 𝑒3
∞ scheme 

is C3. 

 Since         𝑒(3)
𝑘 − 𝑒3

∞ = 8[𝑔( 𝛽𝑘+1) −
1

16
, 2(

1

16
− 𝑔( 𝛽𝑘+1)), 𝑔( 𝛽𝑘+1) −

1

16
] 

             ‖𝑒(3)
𝑘 − 𝑒3

∞‖
∞

= 8𝑚𝑎𝑥 {2 |𝑔( 𝛽𝑘+1) −
1

16
 | , 2 |

1

16
−  𝑔( 𝛽𝑘+1)| } 

             ‖𝑒(3)
𝑘 − 𝑒3

∞‖
∞

= 16 |𝑔( 𝛽𝑘+1) −
1

16
 | 

To prove (2.4), we must prove the smoothness between the series 

                                                   ∑ |𝑔( 𝛽𝑘+1) −
1

16
|+∞

𝑘=0                                     …………  (2.5) 

which depends on the 𝑔( 𝛽𝑘+1) function. Now, since 𝑔( 𝛽𝑘+1) is expressed in relation (2.2) in 

terms of the parameter  𝛽𝑘+1, we will study the behaviour of (2.5), since 𝛽𝑘+1 varies in the 

interval [0, +∞). From now on 

 𝒈( 𝜷𝒌+𝟏) −
𝟏

𝟏𝟔
= 𝟎   𝜷𝒌+𝟏 = 𝟑, (𝒊. 𝒆. , 𝜷𝒌 = 𝟑))                             

 =  
1

2[(𝛽𝑘+1)2−1]
−

1

16
 

 =
1

2[( 3 )2−1]
−

1

16
 

 =
1

2(8)
−

1

16
 

 =
1

16
−

1

16
 

 = 0 

𝒈( 𝜷𝒌+𝟏) −
𝟏

𝟏𝟔
> 𝟎   𝜷𝒌+𝟏 ∈ ( 𝟏, 𝟑 )(i.e., 𝜷𝒌 ∈ [−𝟒, 𝟑)) 

 =  
1

2[(𝛽𝑘+1)2−1]
−

1

16
 

For 𝑘 = 0 

 =  
1

2[(𝛽1)2−1]
−

1

16
 

Now choose 𝜷𝟎 = −𝟒, (𝒊. 𝒆. , 𝜷𝟏 = √𝟐) 

 =
1

2[( √2 )2−1]
−

1

16
 

 =
1

2(1)
−

1

16
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 =
1

2
−

1

16
 

 = 0.5 − 0.0625 

 = 0.4375 > 0. 

For 𝑘 = 1 

 =  
1

2[(𝛽2)2−1]
−

1

16
 

 𝛽1 = 1.4142, (𝑖. 𝑒. , 𝛽2 = 2.7229) 

 =
1

2[( 2.7229 )2−1]
−

1

16
 

 =
1

12.8284
−

1

16
 

 = 0.07795 − 0.0625 

 = 0.01545 > 0. 

For 𝑘 = 2 

 =  
1

2[(𝛽3)2−1]
−

1

16
 

 𝛽2 = 2.7229, (𝑖. 𝑒. , 𝛽3 = 2.9535) 

 =
1

2[( 2.9535 )2−1]
−

1

16
 

 =
1

15.4463
−

1

16
 

 = 0.06474 − 0.0625 

 = 0.00224 > 0. 

For 𝑘 = 3 

 =  
1

2[(𝛽4)2−1]
−

1

16
 

 𝛽3 = 2.9535, (𝑖. 𝑒. , 𝛽4 = 2.9922) 

 =
1

2[(2.9922)2−1]
−

1

16
 

 =
1

15.9065
−

1

16
 

 = 0.0629 − 0.0625 

 = 0.0004 > 0. 
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Again for 𝑘 = 0 

 =  
1

2[(𝛽1)2−1]
−

1

16
 

Now choose 𝜷𝟎 = −𝟐, (𝒊. 𝒆. , 𝜷𝟏 = 𝟐) 

 =
1

2[( 2 )2−1]
−

1

16
 

 =
1

2(3)
−

1

16
 

 =
1

6
−

1

16
 

 = 0.16666 − 0.0625 

 = 0.1041660 > 0. 

For 𝑘 = 1 

 =  
1

2[(𝛽2)2−1]
−

1

16
 

 𝛽1 = 2, (𝑖. 𝑒. , 𝛽2 = 2.82843) 

 =
1

2[( 2.82843 )2−1]
−

1

16
 

 =
1

14.000
−

1

16
 

 = 0.07143 − 0.0625 

 = 0.008929 > 0. 

For 𝑘 = 2 

 =  
1

2[(𝛽3)2−1]
−

1

16
 

 𝛽2 = 2.82843, (𝑖. 𝑒. , 𝛽3 = 2.97127) 

 =
1

2[( 2.97127 )2−1]
−

1

16
 

 =
1

15.6569
−

1

16
 

 = 0.06387 − 0.0625 

 = 0.00137 > 0. 
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For 𝑘 = 3 

 =  
1

2[(𝛽4)2−1]
−

1

16
 

 𝛽3 = 2.97127, (𝑖. 𝑒. , 𝛽4 = 2.99521) 

 =
1

2[( 2.99521 )2−1]
−

1

16
 

 =
1

15.94257
−

1

16
 

 = 0.06273 − 0.0625 

 = 0.00023 > 0. 

Again for 𝑘 = 0 

 =  
1

2[(𝛽1)2−1]
−

1

16
 

Now choose 𝜷𝟎 = −𝟏, (𝒊. 𝒆. , 𝜷𝟏 = √𝟓) 

 =
1

2[( √5 )2−1]
−

1

16
 

 =
1

8
−

1

16
 

 = 0.125 − 0.0625 

 = 0.0625 > 0. 

For 𝑘 = 1 

 =  
1

2[(𝛽2)2−1]
−

1

16
 

 𝛽1 = 2.236, (𝑖. 𝑒. , 𝛽2 = 2.86984) 

 =
1

2[( 2.86984 )2−1]
−

1

16
 

 =
1

14.47196
−

1

16
 

 = 0.069099 − 0.0625 

 = 0.006599 > 0. 
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For 𝑘 = 2 

 =  
1

2[(𝛽3)2−1]
−

1

16
 

 𝛽2 = 2.86984, (𝑖. 𝑒. , 𝛽3 = 2.97823) 

 =
1

2[( 2.97823 )2−1]
−

1

16
 

 =
1

15.7397
−

1

16
 

 = 0.063534 − 0.0625 

 = 0.001034 > 0. 

For 𝑘 = 3 

 =  
1

2[(𝛽4)2−1]
−

1

16
 

 𝛽3 = 2.97823, (𝑖. 𝑒. , 𝛽4 = 2.99637) 

 =
1

2[( 2.99637 )2−1]
−

1

16
 

 =
1

15.9565
−

1

16
 

 = 0.06267 − 0.0625 

 = 0.00017 > 0. 

𝒈( 𝜷𝒌+𝟏) −
𝟏

𝟏𝟔
< 𝟎   𝜷𝒌+𝟏[ 𝟎, 𝟏) ∪ (𝟑, +∞)(i.e., 𝜷𝒌 ∈ [−𝟔, −𝟓) ∪ (𝟑, +∞)) 

Again for 𝑘 = 0 

 =  
1

2[(𝛽1)2−1]
−

1

16
 

Now choose 𝜷𝟎 = 𝟒, (𝒊. 𝒆. , 𝜷𝟏 = √𝟏𝟎) 

 =
1

2[( √10 )2−1]
−

1

16
 

 =
1

2(9)
−

1

16
 

 =
1

18
−

1

16
 

 = 0.05555 − 0.0625 

 = −0.00695 < 0. 



22 
 

For 𝑘 = 1 

 =  
1

2[(𝛽2)2−1]
−

1

16
 

 𝛽1 = 3.1623, (𝑖. 𝑒. , 𝛽2 = 3.0269) 

 =
1

2[( 3.0269 )2−1]
−

1

16
 

 =
1

16.3242
−

1

16
 

 = 0.06126 − 0.0625 

 = −0.00124 < 0. 

For 𝑘 = 2 

 =  
1

2[(𝛽3)2−1]
−

1

16
 

 𝛽2 = 3.0269, (𝑖. 𝑒. , 𝛽3 = 3.0045) 

 =
1

2[( 3.0045 )2−1]
−

1

16
 

 =
1

16.0540
−

1

16
 

 = 0.06229 − 0.0625 

 = −0.00021 < 0. 

For 𝑘 = 3 

 =  
1

2[(𝛽4)2−1]
−

1

16
 

 𝛽3 = 3.0045, (𝑖. 𝑒. , 𝛽4 = 3.00075) 

 =
1

2[( 3.00075 )2−1]
−

1

16
 

 =
1

16.00900
−

1

16
 

 = 0.06246 − 0.0625 

 = −0.00004 < 0. 
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Again for 𝑘 = 0 

 =  
1

2[(𝛽1)2−1]
−

1

16
 

Now choose 𝜷𝟎 = 𝟓, (𝒊. 𝒆. , 𝜷𝟏 = √𝟏𝟏 = 𝟑. 𝟑𝟏𝟔𝟔) 

 =
1

2[( √11)2−1]
−

1

16
 

 =
1

20
−

1

16
 

 = 0.05 − 0.0625 

 = −0.0125 < 0.  

For 𝑘 = 1 

 =  
1

2[(𝛽2)2−1]
−

1

16
 

 𝛽1 = 3.3166, (𝑖. 𝑒. , 𝛽2 = 3.0523) 

 =
1

2[( 3.0523 )2−1]
−

1

16
 

 =
1

16.6331
−

1

16
 

 = 0.060121 − 0.0625 

 = −0.002379 < 0 . 

For 𝑘 = 2 

 =  
1

2[(𝛽3)2−1]
−

1

16
 

 𝛽2 = 3.0523, (𝑖. 𝑒. , 𝛽3 = 3.00870) 

 =
1

2[( 3.00870 )2−1]
−

1

16
 

 =
1

16.1046
−

1

16
 

 = 0.06209 − 0.0625 

 = −0.00041 < 0. 

 

 

 



24 
 

For 𝑘 = 3 

 =  
1

2[(𝛽4)2−1]
−

1

16
 

 𝛽3 = 3.00870, (𝑖. 𝑒. , 𝛽4 = 3.00145) 

 =
1

2[( 3.00145 )2−1]
−

1

16
 

 =
1

16.0174
−

1

16
 

 = 0.06243 − 0.0625 

 = −0.00007 < 0. 

Again for 𝑘 = 0 

 =  
1

2[(𝛽1)2−1]
−

1

16
 

Now choose 𝜷𝟎 = 𝟏𝟎, (𝒊. 𝒆. , 𝜷𝟏 = 𝟒) 

 =
1

2[( 4)2−1]
−

1

16
 

 =
1

30
−

1

16
 

 = 0.03333 − 0.0625 

 = −0.02917 < 0. 

For 𝑘 = 1 

 =  
1

2[(𝛽2)2−1]
−

1

16
 

 𝛽1 = 4, (𝑖. 𝑒. , 𝛽2 = √10) 

 =
1

2[( √10 )2−1]
−

1

16
 

 =
1

2(9)
−

1

16
 

 =
1

18
−

1

16
 

 = 0.05555 − 0.0625 

 = −0.006944 < 0. 
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For 𝑘 = 2 

 =  
1

2[(𝛽3)2−1]
−

1

16
 

 𝛽2 = 3.1623, (𝑖. 𝑒. , 𝛽3 = 3.0269) 

 =
1

2[( 3.0269 )2−1]
−

1

16
 

 =
1

16.3242
−

1

16
 

 = 0.06126 − 0.0625 

 = −0.00124 < 0. 

For 𝑘 = 3 

 =  
1

2[(𝛽4)2−1]
−

1

16
 

 𝛽3 = 3.0269, (𝑖. 𝑒. , 𝛽4 = 3.0045) 

 =
1

2[( 3.0045 )2−1]
−

1

16
 

 =
1

16.0540
−

1

16
 

 = 0.06229 − 0.0625 

 = −0.00021 < 0. 

We are therefore discussing the smoothness of (2.5) according to the three cases: 

2.3.2 Case 1: 

 𝜷𝒌+𝟏 = 𝟑 (𝒊. 𝒆. , 𝜷𝒌 = 𝟑). 

Then          ‖𝑒(3)
𝑘 − 𝑒3

∞‖
∞

= 16 [𝑔(𝛽𝑘+1) −
1

16
] 

                   ‖𝑒(3)
𝑘 − 𝑒3

∞‖
∞

= 16 [
1

2

1

[(𝛽𝑘+1)
2

−1]
−

1

16
] 

                                          = 16 [
1

2[( 3 )2−1]
−

1

16
] 

                                          = 16 [
1

16
−

1

16
]  

                                          = 0 

Smoothness of (2.5) follows. 
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2.3.3 Case 2: 

           𝜷𝟎 ∈ (−𝟓, 𝟑)(𝒊. 𝒆. , 𝜷𝒌+𝟏 ∈ (𝟏, 𝟑)). 

In this case 

                       ‖𝑒(3)
𝑘 − 𝑒3

∞‖
∞

= 16 [𝑔(𝛽𝑘+1) −
1

16
]\ 

                        𝑔(𝛽𝑘+1) −
1

16
=

1

2

1

[(𝛽𝑘+1)
2

−1]
−

1

16
 

For 𝑘 = 0. 

                         𝑔(𝛽1) −
1

16
=

1

2

1

[(𝛽1)2−1]
−

1

16
 

Choose 𝜷𝟎 = −𝟒, (𝒊. 𝒆. , 𝜷𝟏 = √𝟐). 

                         𝑔(𝛽1) −
1

16
=

1

2

1

[(√2)
2

−1]
−

1

16
 

                                            =
1

2
−

1

16
 

                                            = 0.5 − 0.0625 

                                            = 0.4375 < +∞. 

For 𝑘 = 1 

                         𝑔(𝛽2) −
1

16
=  

1

2[(𝛽2)2−1]
−

1

16
 

     𝛽1 = 1.4142, (𝑖. 𝑒. , 𝛽2 = 2.7229). 

                                           =
1

2[( 2.7229 )2−1]
−

1

16
 

                                           =
1

12.8284
−

1

16
 

                                           = 0.07795 − 0.0625 

                                           = 0.01545 < +∞. 

For 𝑘 = 2 

                        𝑔(𝛽3) −
1

16
=  

1

2[(𝛽3)2−1]
−

1

16
 

 𝛽2 = 2.7229, (𝑖. 𝑒. , 𝛽3 = 2.9535). 

                                     =
1

2[( 2.7229 )2−1]
−

1

16
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                                    =
1

12.8284
−

1

16
 

                                    = 0.07795 − 0.0625 

                                    = 0.01545 < +∞. 

For 𝑘 = 3 

                𝑔(𝛽3) −
1

16
=  

1

2[(𝛽4)2−1]
−

1

16
 

 𝛽3 = 2.9535, (𝑖. 𝑒. , 𝛽4 = 2.9922). 

                                =
1

2[(2.9922)2−1]
−

1

16
 

                                =
1

15.9065
−

1

16
 

                                = 0.0629 − 0.0625 

                                = 0.0004 < +∞. 

Again for 𝑘 = 0  

             𝑔(𝛽1) −
1

16
=

1

2

1

[(𝛽1)2−1]
−

1

16
 

Choose 𝜷𝟎 = −𝟐, (𝒊. 𝒆. , 𝜷𝟏 = 𝟐).                                        

                              =
1

2

1

[(2)2−1]
−

1

16
 

                              =
1

6
−

1

16
 

                              = 0.16666 − 0.0625 

                              = 0.1041660 < +∞. 

For 𝑘 = 1 

          𝑔(𝛽2) −
1

16
=  

1

2[(𝛽2)2−1]
−

1

16
 

 𝛽1 = 2, (𝑖. 𝑒. , 𝛽2 = 2.82843). 

                            =
1

2[( 2.82843 )2−1]
−

1

16
 

                            =
1

14.000
−

1

16
 

                            = 0.07143 − 0.0625 

                            = 0.008929 < +∞. 
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For 𝑘 = 2 

       𝑔(𝛽3) −
1

16
=  

1

2[(𝛽3)2−1]
−

1

16
 

 𝛽2 = 2.82843, (𝑖. 𝑒. , 𝛽3 = 2.97127). 

                        =
1

2[( 2.97127 )2−1]
−

1

16
 

                        =
1

15.6569
−

1

16
 

                        = 0.06387 − 0.0625 

                        = 0.00137 < +∞. 

For 𝑘 = 3 

     𝑔(𝛽4) −
1

16
=  

1

2[(𝛽4)2−1]
−

1

16
 

 𝛽3 = 2.97127, (𝑖. 𝑒. , 𝛽4 = 2.99521). 

   𝑔(𝛽4) −
1

16
=

1

2[( 2.99521 )2−1]
−

1

16
 

                     =
1

15.94257
−

1

16
 

                     = 0.06273 − 0.0625 

                     = 0.00023 < +∞. 

Thus  

                          ∑ (𝑔( 𝛽𝑘+1) −
1

16
)+∞

𝑘=0 =  ∑ (
1

2

1

[(𝛽𝑘+1)
2

−1]
−

1

16
) < +∞+∞

𝑘=0 . 

As  𝛽𝑘+1 = √𝛽𝑘 + 6,   𝑎𝑛𝑑 𝑔( 𝛽𝑘+1) =
1

2

1

[(𝛽𝑘+1)
2

−1]
  , 

That is for   𝛽0 = −3,   

𝑤ℎ𝑒𝑛 𝑘 = 0, we have 

                                                       𝛽1 = √𝛽0 + 6 

                                                       𝛽1 = √−3 + 6 

                                                        𝛽1 = √3 
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This implies  

                                    𝑔(𝛽1) −
1

16
=  

1

2

1

[(𝛽1)2−1]
−

1

16
 

                                                       =
1

4
−

1

16
 

                                                       = 0.25 − 0.0625 

                                                       = 0.1875 

𝑤ℎ𝑒𝑛 𝑘 = 1, we have 

                                                  𝛽2 = √𝛽1 + 6 

                                                  𝛽2 = √1.7320 + 6 

                                                   𝛽2 = 2.780647 

This implies  

                                    𝑔(𝛽2) −
1

16
=  

1

2

1

[(𝛽2)2−1]
−

1

16
 

                                                       =
1

13.46399
−

1

16
 

                                                       = 0.0742721 − 0.0625 

                                                       = 0.011772                                        

Now applying ratio test, we get 

 𝑔(𝛽2) −
1

16

𝑔(𝛽1) −
1

16

=

1
2

1
[(𝛽2)2 − 1]

−
1

16

 
1
2

1
[(𝛽1)2 − 1]

−
1

16

=
0.011772 

0.1875
= 0.062784 < 1 

𝑤ℎ𝑒𝑛 𝑘 = 2, we have 

                                                 𝛽3 = √𝛽2 + 6 

                                                 𝛽3 = √2.780647 + 6 

                                                  𝛽3 = 2.9632156 

This implies  

                                    𝑔(𝛽3) −
1

16
=  

1

2

1

[(𝛽3)2−1]
−

1

16
 

                                                       =
1

15.5612933
−

1

16
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                                                       = 0.0642620 − 0.0625 

                                                       = 0.00176200                                     

Now applying ratio test, we get 

 𝑔(𝛽3) −
1

16

𝑔(𝛽2) −
1

16

=

1
2

1
[(𝛽3)2 − 1]

−
1

16

 
1
2

1
[(𝛽2)2 − 1]

−
1

16

=
0.00176200

0.011772
= 0.1496772001 < 1. 

𝑤ℎ𝑒𝑛 𝑘 = 3 , we have 

                                                 𝛽4 = √𝛽3 + 6 

                                                 𝛽4 = √2.9632156 + 6 

                                                  𝛽4 = 2.9938629 

This implies                                

                                   𝑔(𝛽4) −
1

16
=  

1

2

1

[(𝛽4)2−1]
−

1

16
 

                                                      =
1

15.926430128
−

1

16
 

                                                      = 0.0627887 − 0.0625 

                                                      = 0.00028870                               

 Now applying ratio test, we get 

 𝑔(𝛽4) −
1

16

𝑔(𝛽3) −
1

16

=

1
2

1
[(𝛽4)2 − 1]

−
1

16

 
1
2

1
[(𝛽3)2 − 1]

−
1

16

=
0.00028870

0.00176200
= 0.1638479001 < 1. 

Use the ratio test at this point. Since  𝑔( 𝛽𝑘+1) −
1

16
> 0 and the sequence {𝛽𝑘}𝑘∈𝑁 in this case 

is increases strictly that’s how it is   

1
2

1
[(𝛽𝑘+2)2 − 1]

−
1

16

1
2

1
[(𝛽𝑘+1)2 − 1]

−
1

16

 < 1 

This proved the smoothness of (2.5). 
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2.3.4 Case 3: 𝜷𝟎 ∈ [−𝟔, −𝟓) ∪ (𝟑, +∞)(𝒊. 𝒆. , 𝜷𝒌+𝟏 ∈ [𝟎, 𝟏) ∪ (𝟑, +∞)). 

In this case,                     

                                 ‖𝑒(3)
𝑘 − 𝑒3

∞‖
∞

= 16 [
1

16
− 𝑔( 𝛽𝑘+1)] 

 Consider                   
1

16
− 𝑔(𝛽𝑘+1) =

1

16
−

1

2

1

[(𝛽𝑘+1)
2

−1]
 

For 𝑘 = 0, we have 

                                     
1

16
− 𝑔(𝛽1) =

1

16
−

1

2

1

[(𝛽1)2−1]
 

Now choose 𝜷𝟎 = −𝟔, (𝒊. 𝒆. , 𝜷𝟏 = 𝟎).   

                                                       =
1

16
−

1

2

1

[(0)2−1]
 

                                                      =
1

16
+

1

2
 

                                                      = 0.0625 + 0.5 

                                                      = 0.5625 < +∞. 

For 𝑘 = 1, we have 

                                  
1

16
− 𝑔(𝛽2) =

1

16
−

1

2

1

[(𝛽2)2−1]
 

 𝛽1 = 0, (𝑖. 𝑒. , 𝛽2 =  √6 = 2.4495) 

                                                    =
1

16
−

1

2[( √6 )2−1]
 

                                                   =
1

16
−

1

10
 

                                                   = 0.0625 − 0.1 

                                                   = −0.0375 < +∞. 

For 𝑘 = 2 

                               
1

16
−  𝑔(𝛽3) =  

1

16
−

1

2[(𝛽3)2−1]
 

 𝛽2 = 2.4495, (𝑖. 𝑒. , 𝛽3 = 2.90680). 

                                                 =
1

16
−

1

2[(2.90680)2−1]
 

                                                 =
1

16
−

1

14.89897
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                                                 = 0.0625 − 0.06712 

                                                 = −0.00462 < +∞. 

For 𝑘 = 3 

                          
1

16
−  𝑔(𝛽4) =  

1

16
−

1

2[(𝛽4)2−1]
 

 𝛽3 = 2.90680, (𝑖. 𝑒. , 𝛽4 = 2.98443). 

                                             =
1

16
−

1

2[(2.98443)2−1]
 

                                             =
1

16
−

1

15.81364
 

                                             = 0.0625 − 0.06324 

                                             = −0.00074 < +∞. 

Again for 𝑘 = 0, we have 

                          
1

16
− 𝑔(𝛽1) =

1

16
−

1

2

1

[(𝛽1)2−1]
 

Now choose 𝜷𝟎 = √𝟏𝟎 = 𝟑. 𝟏𝟔𝟐𝟑, (𝒊. 𝒆. , 𝜷𝟏 = 𝟑. 𝟎𝟐𝟔𝟗).   

                                           =
1

2[( 3.0269 )2−1]
−

1

16
 

                                          =
1

16.3242
−

1

16
 

                                          = 0.06126 − 0.0625 

                                          = −0.00124 < +∞. 

For 𝑘 = 1 

                     
1

16
−  𝑔(𝛽2) =  

1

2[(𝛽2)2−1]
−

1

16
 

 𝛽1 = 3.0269, (𝑖. 𝑒. , 𝛽2 = 3.0045). 

                                       =
1

2[( 3.0045 )2−1]
−

1

16
 

                                      =
1

16.0540
−

1

16
 

                                      = 0.06229 − 0.0625 

                                      = −0.00021 < +∞. 
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For 𝑘 = 2 

            
1

16
−  𝑔(𝛽3) =  

1

2[(𝛽3)2−1]
−

1

16
 

 𝛽2 = 3.0045, (𝑖. 𝑒. , 𝛽3 = 3.00075). 

                             =
1

2[( 3.00075 )2−1]
−

1

16
 

                             =
1

16.00900
−

1

16
 

                             = 0.06246 − 0.0625 

                             = −0.00004 < +∞. 

For 𝑘 = 3 

        
1

16
−  𝑔(𝛽4) =  

1

2[(𝛽4)2−1]
−

1

16
 

 𝛽2 = 3.00075, (𝑖. 𝑒. , 𝛽3 = 3.00012). 

                          =
1

2[( 3.00012 )2−1]
−

1

16
 

                          =
1

16.00144
−

1

16
 

                          = 0.06249 − 0.0625 

                          = −0.00001 < +∞. 

Thus 

                            ∑ (
1

16
− 𝑔( 𝛽𝑘+1))+∞

𝑘=0 =  ∑ (
1

16
−

1

2

1

[(𝛽𝑘+1)
2

−1]
) < +∞+∞

𝑘=0 . 

 So, we’ve got two subcases. 

2.3.4.1 Case 3.1  𝛽0 ∈ (3, +∞)(𝑖. 𝑒. , 𝛽𝑘+1 ∈ (3, +∞)). Since in this case the sequence 

{𝛽𝑘}𝑘∈𝑁 is decreases strictly. 

For   𝛽0 = 4,  𝛽𝑘+1 = √𝛽𝑘 + 6, 𝑤ℎ𝑒𝑛 𝑘 = 0 , we have 

                          𝛽1 = √𝛽0 + 6 

                          𝛽1 = √4 + 6 

                          𝛽1 = √10 
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This implies  

                    
1

16
− 𝑔(𝛽1) =

1

16
−  

1

2

1

[(𝛽1)2−1]
 

                                       =
1

16
−

1

18
 

                                       = 0.0625 − 0.05555 

                                       = 0.00695 

𝑤ℎ𝑒𝑛 𝑘 = 1, we have 

                                 𝛽2 = √𝛽1 + 6 

                                 𝛽2 = √3.16227 + 6 

                                  𝛽2 = 3.026924 

This implies  

                    
1

16
− 𝑔(𝛽2) =  

1

16
−  

1

2

1

[(𝛽2)2−1]
 

                                       =
1

16
−

1

16.32453
 

                                       = 0.0625 − 0.0612575 

                                       = 0.0012425                                            

Now applying ratio test, we get 

1
16 − 𝑔(𝛽2)

1
16 − 𝑔(𝛽1)

=

1
16 −  

1
2

1
[(𝛽2)2 − 1]

1
16 −  

1
2

1
[(𝛽1)2 − 1]

=
0.0012425 

0.00695
= 0.17878 < 1 

𝑤ℎ𝑒𝑛 𝑘 = 2, we have 

                                  𝛽3 = √𝛽2 + 6 

                                  𝛽3 = √3.026924 + 6 

                                  𝛽3 = 3.004484 

This implies  

                      
1

16
− 𝑔(𝛽3) =  

1

16
−  

1

2

1

[(𝛽3)2−1]
 

                                         =
1

16
−

1

16.053848
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                                         = 0.0625 − 0.062290 

                                         = 0.00021                                

Now applying ratio test, we get 

                               

1

16
−𝑔(𝛽2)

1

16
−𝑔(𝛽1)

=

1

16
− 

1

2

1

[(𝛽2)
2

−1]

1

16
− 

1

2

1

[(𝛽1)
2

−1]

=  
0.00021

0.0012425
= 0.1690141 < 1                                                

𝑤ℎ𝑒𝑛 𝑘 = 3, we have 

                                   𝛽4 = √𝛽3 + 6 

                                   𝛽4 = √3.004484 + 6 

                                   𝛽4 = 3.000747 

This implies      

                    
1

16
− 𝑔(𝛽4) =  

1

16
−  

1

2

1

[(𝛽4)2−1]
 

                                       =
1

16
−

1

16.008965
 

                                       = 0.0625 − 0.06246 

                                       = 0.00004                              

 Now applying ratio test, we get 

1
16 − 𝑔(𝛽4)

1
16 − 𝑔(𝛽3)

=

1
16 −  

1
2

1
[(𝛽4)2 − 1]

1
16 −  

1
2

1
[(𝛽3)2 − 1]

=  
0.00004

0.00021
= 0.190476 < 1 

Use the ratio test at this point. In this case the sequence {𝛽𝑘}𝑘∈𝑁 increases strictly to such an 

extent that  

1
16 −

1
2

1
[(𝛽𝑘+2)2 − 1]

1
16 −

1
2

1
[(𝛽𝑘+1)2 − 1]

 < 1 

Hence the smoothness of (2.5) is therefore proven. 
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2.3.4.2 Case 3.2   

𝛽0 ∈ [−6, −5). We get 𝛽1 ∈ [0,1) and 𝛽𝑘 ∈ (1,3), 𝑘 = 2,3,4, . . ., turning to case 2. 

Smoothness has therefore been proven. 

       In combining these three cases, it can be concluded that the non-stationary SS defined by 

the coefficients in (2.2) is asymptotically equivalent to the stationary scheme in (2.1) with 

 𝛽1
𝑘 =

1

16
, 𝛽2

𝑘 =
5

8
 , 𝛽3

𝑘 =
5

16
, and developed continuous limit curve of 𝐶3. 

     The verification of theorem 1 is done.     

2.4 Graphical View 

We would like to give an example in this section to show the benefit of the scheme (2.2). As 

we mentioned in section 2.2, the curves generated tend to approximate the initial polygon of 

control when 𝛽0 → +∞. 
In Figure 2.1, generation of wide range of C3-continuous limiting curves for different parameter 

values using the scheme (2.1) (a) 𝛽0 = −5.5, (b) 𝛽0 = −5.2, (c) 𝛽0 = −5, (d) 𝛽0 = −3.8, 
(e) 𝛽0 = −2.5, (f) 𝛽0 = 0, (g) 𝛽0 = 2, (h) 𝛽0 = 10, (i) 𝛽0 = 1000. 
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Figure 2.1: Generating wide range of C3-continuous limiting curves using the scheme (2.2) for 

different values of parameter. (a) 𝛽0 = −5.5, (b) 𝛽0 = −5.2, (c) 𝛽0 = −5, (d) 𝛽0 = −3.8, 

(e) 𝛽0 = −2.5, (f) 𝛽0 = 0, (g) 𝛽0 = 2, (h) 𝛽0 = 10, (i) 𝛽0 = 1000. 
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Chapter # 3 

A non-stationary four-point subdivision technique 

3.1 Stationary four-point subdivision technique 

                             Kim et al. [13] proposed a binary subdivision scheme with four points that 

generates a smooth C3-continuous limiting curve. Given the set of control points 𝑞0 = {𝑞𝑖
0}𝑖∈𝑍 

at level 0, the binary four point SS for the design of curves generates a new set of control points 

{𝑞𝑖
𝑘+1}𝑖∈𝑍 at level k+1 using the following subdivision  rules 

𝑞2𝑖
𝑘+1 = −𝛽0

𝑘𝑞𝑖−2
𝑘 + 𝛽1

𝑘𝑞𝑖−1
𝑘 + 𝛽2

𝑘𝑞𝑖
𝑘 + 𝛽3

𝑘𝑞𝑖+1
𝑘 − 𝛽4

𝑘𝑞𝑖+2
𝑘  

                             𝑞2𝑖+1
𝑘+1 = −

1

16
𝑞𝑖−1

𝑘 +
9

16
𝑞𝑖

𝑘 +
9

16
𝑞𝑖+1

𝑘 −
1

16
𝑞𝑖+2

𝑘 .                       …………(3.1) 

Where 𝑞0 = {𝑞𝑖
0}𝑖∈𝑍 is the set of initial control point at level 0 and the mask of the scheme, the 

relationship 𝛽0 + 𝛽1 + 𝛽2 + 𝛽3 + 𝛽4 = 1 shell be met. The scheme coefficients (3.1) are 

 𝛽0 = −
3

128
, 𝛽1 =

12

128
, 𝛽2 =

110

128
, 𝛽3 =

12

128
, 𝛽4 = −

3

128
. 

       They found that the scheme is 𝐶1-continuous when and the scheme is 𝐶2-continuous when 

−0.12 < 𝛽 < 0.21 and the scheme is 𝐶3-continuous when −0.88 < 𝛽 < 0.13. For the range 

of −0.88 < 𝛽 < 0.13, the proposed scheme is non-stationary scheme. 

3.2 Non-stationary four-point subdivision technique 

         The refining rules of the binary non-stationary SS of four points are defined as 

𝑞2𝑖
𝑘+1 = −𝛽0

𝑘𝑞𝑖−2
𝑘 + 𝛽1

𝑘𝑞𝑖−1
𝑘 + 𝛽2

𝑘𝑞𝑖
𝑘 + 𝛽3

𝑘𝑞𝑖+1
𝑘 − 𝛽4

𝑘𝑞𝑖+2
𝑘  

                             𝑞2𝑖+1
𝑘+1 = −

1

16
𝑞𝑖−1

𝑘 +
9

16
𝑞𝑖

𝑘 +
9

16
𝑞𝑖+1

𝑘 −
1

16
𝑞𝑖+2

𝑘 .                     ………….(3.2) 

Where 𝑞0 = {𝑞𝑖
0}𝑖∈𝑍 is the set of initial control point at level 0 and the mask of the scheme, the 

relationship 𝛽0 + 𝛽1 + 𝛽2 + 𝛽3 + 𝛽4 = 1 shell be met. 

The binary non-stationary four point subdivision scheme (3.2) is counter part of stationary 

scheme [13]. The mask of the scheme are given by  

 𝛽0
𝑘 = −𝑔(𝛽𝑘+1) = 𝛽4

𝑘,     𝛽1
𝑘 = 4𝑔(𝛽𝑘+1) = 𝛽3

𝑘,       𝛽2 = 1 − 6𝑔(𝛽𝑘+1); 

     𝑔(𝛽𝑘+1) =
1

2
[

 (𝛽𝑘+1)2−1

(𝛽𝑘+1)2+60
]                                                                                  ……..….(3.3) 

With  

 𝛽𝑘+1 = √𝛽𝑘 + 2,                𝑎𝑛𝑑                𝛽0 ∈ [−2, +∞).                               …………(3.4) 
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         In this way, the coefficients 𝛽𝑖
𝑘 at each different steps k can be calculated using the given 

formula and given an initial parameter 𝛽0 ∈ [−2, +∞). 

       Starting with any 𝛽0 ≥ −2, we always have 𝛽𝑘 + 2 ≥ 0, ∀𝑘 ∈ 𝑍+, so 𝛽𝑘+1 is always well-

established. A vast range of definitions enables to achieve significant variations in the form of 

the smooth curves. 

3.2.1 Remark 1. As the initial values of 𝛽0 increases in its definition range, the behaviour of 

the smooth curve changes significantly from the figure (3.1) and tends to approximate the initial 

control polygon as 𝛽0 → +∞. 

3.2.2 Remark 2. From (3.3), if we have 𝛽0 = 2 then 𝛽𝑘 = 2, ∀ 𝑘 ∈ 𝑍+ and the sequence 

{𝛽𝑘}𝑘∈𝑁 is stationary. So that the non-stationary SS is then retrograde to the stationary SS. 

That’s k = 0, we get 

𝛽1 = √𝛽0 + 2 

                                                               𝛽1 = √2 + 2 

                                                               𝛽1 = √4 

                                                               𝛽1 = 2 

Put k = 1, we get 

                                                              𝛽2 = √𝛽1 + 2 

                                                              𝛽2 = √2 + 2 

                                                              𝛽2 = √4 

                                                              𝛽2 = 2 

Put k = 2, we get 

                                                              𝛽3 = √𝛽2 + 2 

                                                              𝛽3 = √2 + 2 

                                                              𝛽3 = √4 

                                                              𝛽3 = 2 

Put k = 3, we get 

                                                             𝛽4 = √𝛽3 + 2                                     

                                                             𝛽4 = √2 + 2          
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                                                             𝛽4 = 2 

If 𝛽0 > 2, then 𝛽𝑘 > 2, the sequence {𝛽𝑘}𝑘∈𝑁 is strictly reduced that 𝛽𝑘 converges to 2 as the 

𝑘 → ∞. 

Now choose 𝜷𝟎 = 𝟑. 

Put k = 0, we get 

𝛽1 = √𝛽0 + 2 

                                                               𝛽1 = √3 + 2 

                                                               𝛽1 = √5 

𝛽1 = 2.23607 

Put k = 1, we get 

                                                               𝛽2 = √𝛽1 + 2 

                                                               𝛽2 = √2.23607 + 2 

                                                               𝛽2 = √4.23607 

𝛽2 = 2.05817 

Put k = 2, we get 

                                                              𝛽3 = √𝛽2 + 2 

                                                              𝛽3 = √2.05817 + 2 

𝛽3 = √4.05817 

𝛽3 = 2.014490 

Put k = 3, we get 

                                                              𝛽4 = √𝛽3 + 2 

                                                              𝛽4 = √2.014490 + 2 

                                                              𝛽4 = √4.01449 

                                                              𝛽4 = 2.00361 
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Now choose 𝜷𝟎 = 𝟒. 

Put k = 0, we get 

𝛽1 = √𝛽0 + 2 

                                                               𝛽1 = √4 + 2 

                                                               𝛽1 = √6 

𝛽1 = 2.44949 

Put k = 1, we get 

                                                              𝛽2 = √𝛽1 + 2 

                                                              𝛽2 = √2.44949 + 2 

𝛽2 = √4.44949 

                                                              𝛽2 = 2.10938 

Put k = 2, we get 

                                                              𝛽3 = √𝛽2 + 2 

                                                              𝛽3 = √2.10938 + 2 

                                                              𝛽3 = √4.10938 

                                                              𝛽3 = 2.02716 

Put k = 3, we get 

                                                             𝛽4 = √𝛽3 + 2 

                                                             𝛽4 = √2.02716 + 2 

                                                             𝛽4 = √4.02716 

                                                             𝛽4 = 2.00678 
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Now choose 𝜷𝟎 = 𝟓. 

Put k = 0, we get 

                                                             𝛽1 = √𝛽0 + 2 

                                                            𝛽1 = √5 + 2 

                                                           𝛽1 = √7 

                                                           𝛽1 = 2.64575 

Put k = 1, we get 

                                                          𝛽2 = √𝛽1 + 2 

                                                          𝛽2 = √2.64575 + 2 

                                                          𝛽2 = √4.64575 

                                                          𝛽2 = 2.155400 

Put k = 2, we get 

                                                         𝛽3 = √𝛽2 + 2 

                                                         𝛽3 = √2.155400 + 2 

                                                         𝛽3 = √4.155400 

                                                         𝛽3 = 2.03848 

Put k = 3, we get 

                                                        𝛽4 = √𝛽3 + 2 

                                                        𝛽4 = √2.03848 + 2 

                                                        𝛽4 = √4.03848 

                                                        𝛽4 = 2.009597 
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Now choose 𝜷𝟎 = 𝟔. 

Put k = 0, we get 

𝛽1 = √𝛽0 + 2 

                                                               𝛽1 = √6 + 2 

                                                               𝛽1 = √8 

𝛽1 = 2.828427 

Put k = 1, we get 

                                                             𝛽2 = √𝛽1 + 2 

                                                             𝛽2 = √2.828427 + 2 

𝛽2 = √4.828427 

                                                             𝛽2 = 2.19737 

Put k = 2, we get 

                                                            𝛽3 = √𝛽2 + 2 

                                                            𝛽3 = √2.19737 + 2 

                                                            𝛽3 = √4.19737 

                                                            𝛽3 = 2.048748 

Put k = 3, we get 

                                                           𝛽4 = √𝛽3 + 2 

                                                           𝛽4 = √2.048748 + 2 

                                                           𝛽4 = √4.048748 

                                                           𝛽4 = 2.012150 

Similarly we can check for 𝛽0 = 7 and so on. 
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If 𝛽0 < 2, then 𝛽𝑘 < 2, the sequence {𝛽𝑘}𝑘∈𝑁 is increases strictly and 𝛽𝑘 converges to 2 as 

the 𝑘 → ∞. 

Choose 𝜷𝟎 = 𝟏. 

Put k = 0, we get 

𝛽1 = √𝛽0 + 2 

                                                               𝛽1 = √1 + 2 

                                                               𝛽1 = √3 

𝛽1 = 1.732050 

Put k = 1, we get 

                                                             𝛽2 = √𝛽1 + 2 

                                                             𝛽2 = √1.732050 + 2 

                                                             𝛽2 = √3.732050 

                                                             𝛽2 = 1.931851 

Put k = 2, we get 

                                                           𝛽3 = √𝛽2 + 2 

                                                           𝛽3 = √1.931851 + 2 

                                                           𝛽3 = √3.931851 

                                                           𝛽3 = 1.982889 

Put k = 3, we get 

                                                          𝛽4 = √𝛽3 + 2 

                                                          𝛽4 = √1.982889 + 2 

                                                          𝛽4 = √3.982889 

                                                          𝛽4 = 1.9957177 
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Choose 𝜷𝟎 = 𝟎. 

Put k = 0, we get 

                                                      𝛽1 = √𝛽0 + 2 

                                                      𝛽1 = √0 + 2 

                                                      𝛽1 = √2 

                                                      𝛽1 = 1.414214 

Put k = 1, we get 

                                                     𝛽2 = √𝛽1 + 2 

                                                     𝛽2 = √1.414214 + 2 

                                                     𝛽2 = √3.414214 

                                                     𝛽2 = 1.8477592 

Put k = 2, we get 

                                                    𝛽3 = √𝛽2 + 2 

                                                    𝛽3 = √1.8477592 + 2 

                                                    𝛽3 = √3.8477592 

                                                    𝛽3 = 1.961571 

Put k = 3, we get 

                                                   𝛽4 = √𝛽3 + 2 

                                                   𝛽4 = √1.961571 + 2 

                                                   𝛽4 = √3.961571 

                                                   𝛽4 = 1.990369 
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Choose 𝜷𝟎 = −𝟏. 

Put k = 0, we get 

                                               𝛽1 = √𝛽0 + 2 

                                               𝛽1 = √−1 + 2 

                                               𝛽1 = √1 

                                               𝛽1 = 1. 

Put k = 1, we get 

                                               𝛽2 = √𝛽1 + 2 

                                               𝛽2 = √1 + 2 

                                               𝛽2 = 1.732051 

Put k = 2, we get 

                                               𝛽3 = √𝛽2 + 2 

                                               𝛽3 = √1.732051 + 2 

                                               𝛽3 = √3.732051 

                                               𝛽3 = 1.931852 

Put k = 3, we get 

                                               𝛽4 = √𝛽3 + 2 

                                               𝛽4 = √1.931852 + 2 

                                               𝛽4 = √3.931852 

                                               𝛽4 = 1.98289 

Choose 𝜷𝟎 = −𝟐. 

Put k = 0, we get 

                                              𝛽1 = √𝛽0 + 2 

                                              𝛽1 = √−2 + 2 

                                              𝛽1 = 0. 
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Put k = 1, we get 

                                              𝛽2 = √𝛽1 + 2 

                                              𝛽2 = √0 + 2 

                                              𝛽2 = √2 

                                              𝛽2 = 1.414214 

Put k = 2, we get 

                                             𝛽3 = √𝛽2 + 2 

                                             𝛽3 = √1.414214 + 2 

                                             𝛽3 = √3.414214 

                                             𝛽3 = 1.8477592 

Put k = 3, we get 

                                            𝛽4 = √𝛽3 + 2 

                                           𝛽4 = √1.8477592 + 2 

                                           𝛽4 = √3.8477592 

                                           𝛽4 = 1.96157 

Therefore, in the definition domain of any 𝛽0 we always have  

                                                        lim
𝑘→+∞

𝛽𝑘 = 2. 

3.3 Smoothness Analysis 

In this section, we will illustrate that, given the initial discrete polygon, the subdivision 

technique developed in section 3.2 gives a smooth C3 continuous curve for any selection of the 

initial parameter values 𝛽0 in its definition range. To show this fact, we quote Dyn and Levin’s 

well-known results [25], which relate the smoothness of a non-stationary technique with its 

asymptotically equivalent stationary technique counterpart. 

3.3.1 Theorem.  A non-stationary SS defined by the masks in equation (3.3) is 

asymptotically equivalent to the stationary system with masks in equation (3.1), C3-continuous 

limit curves are therefore generated. 

Proof. In order to check that the proposed non-stationary technique converges to C3-

continuous smooth curve, its second divided difference mask should be obtained. The scheme 

mask is 
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𝑚𝑘 = [−𝑔( 𝛽𝑘+1), − 
1

16
, 4𝑔( 𝛽𝑘+1),

9

16
, 1 − 6𝑔( 𝛽𝑘+1),

9

16
 , 4𝑔( 𝛽𝑘+1), − 

1

16
, −𝑔( 𝛽𝑘+1)] 

Then it turns out its first divided difference masks are 

𝑒(1)
𝑘 = 2 [−𝛽, (𝛽 −

1

16
) , (3𝛽 +

1

16
) , (

1

2
− 3𝛽) , (

1

2
− 3𝛽) , (3𝛽 +

1

16
) , (𝛽 −

1

16
) , −𝛽] 

Then it turns out its 2nd divided difference masks are 

𝑒(2)
𝑘 = 4 [−𝛽, (2𝛽 −

1

16
) , (𝛽 +

1

8
) , (

3

8
− 4𝛽) , (𝛽 +

1

8
) , (2𝛽 −

1

16
) , −𝛽] 

Then it turns out its 3rd divided difference masks are 

               𝑒(3)
𝑘 = 8 [−𝛽, (3𝛽 −

1

16
) , (−2𝛽 +

3

16
) , (−2𝛽 +

3

16
) , (3𝛽 −

1

16
) , −𝛽] 

The application of Remark 2 now provides  

               𝑒(3)
∞ = lim

𝑘→+∞
𝑒3

𝑘 = 8 [−
3

128
,

1

128
 ,

18

128
,

18

128
,

1

128
, −

3

128
] 

This is just the coefficients of the third divided differences of the stationary technique with 

coefficients in equation (3.1). In this case, the stationary technique is C3-continuous, the 

technique associated with 𝑒3
∞ will be C3 smooth. If it is as  

                                           ∑ ‖𝑒(3)
𝑘 − 𝑒3

∞‖
∞

< +∞+∞
𝑘=0 .                                           ………(3.5) 

The two techniques are then equivalent asymptotically. And one can conclude this that the 𝑒3
∞ 

of the technique is C3, since then 

𝑒(3)
𝑘 − 𝑒3

∞ = 8[−2𝑔( 𝛽𝑘+1) +
6

128
 , −3 (−2𝑔( 𝛽𝑘+1) +

6

128
, 2(−2𝑔( 𝛽𝑘+1) +

6

128
)]  

‖𝑒(3)
𝑘 − 𝑒3

∞‖
∞

= 8𝑚𝑎𝑥 {3 |−2𝑔( 𝛽𝑘+1) +
6

128
 | , |−3| |−2𝑔( 𝛽𝑘+1) +

6

128
 | , 2 |−2𝑔( 𝛽𝑘+1) +

6

128
 |} 

                          = 24|−2𝑔( 𝛽𝑘+1) +
6

128
 | 

                          = 48|
3

128
−  𝑔( 𝛽𝑘+1)| 

Now we are proving the series smoothness  

                                             ∑ |
3

128
− 𝑔( 𝛽𝑘+1)|+∞

𝑘=0 .                                              ………..(3.6) 
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Which depends on the 𝑔( 𝛽𝑘+1) function. Now, since 𝑔( 𝛽𝑘+1) is expressed in terms of the 

𝛽𝑘+1, the behaviour of  𝛽𝑘+1 varies in the interval [0, +∞). From now on  

𝟑

𝟏𝟐𝟖
− 𝒈( 𝜷𝒌+𝟏) = 𝟎   𝜷𝒌+𝟏 = 𝟐(i.e., 𝜷𝒌 = 𝟐)). 

 =
3

128
−

1

2
[

 (𝛽𝑘+1)2−1

(𝛽𝑘+1)2+60
] 

 =
3

128
−

1

2
[

(2)2−1

(2)2+60
] 

 =
3

128
−

3

128
 

= 0. 

𝟑

𝟏𝟐𝟖
− 𝒈( 𝜷𝒌+𝟏) > 𝟎   𝜷𝒌+𝟏 ∈ (−𝟏, 𝟐) (𝒊. 𝒆. , 𝜷𝟎 ∈ [−𝟐, 𝟐)). 

 =
3

128
−

1

2
[

 (𝛽𝑘+1)2−1

(𝛽𝑘+1)2+60
] 

For 𝑘 = 0 

 =
3

128
−

1

2
[

 (𝛽1)2−1

(𝛽1)2+60
] 

Choose  𝜷𝟎 = −𝟐, (𝒊. 𝒆. , 𝜷𝟏 = 𝟎). 

 =
3

128
−

1

2
[

(0)2−1

(0)2+60
] 

 =
3

128
+

1

120
 

 = 0.0234375 + 0.008333 

 = 0.0317705 > 0. 

For 𝑘 = 1 

 =
3

128
−

1

2
[

 (𝛽2)2−1

(𝛽2)2+60
] 

Choose  𝛽1 = 0, (𝑖. 𝑒. , 𝛽2 = √2). 

 =
3

128
−

1

2
[

(√2)2−1

(√2)2+60
] 

 =
3

128
−

1

124
 

 = 0.0234375 − 0.008065 

= 0.0153725 > 0. 
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For 𝑘 = 2 

 =
3

128
−

1

2
[

 (𝛽3)2−1

(𝛽3)2+60
] 

Choose  𝛽2 = 1.4142, (𝑖. 𝑒. , 𝛽3 = 1.84776). 

 =
3

128
−

1

2
[

(1.84776)2−1

(1.84776)2+60
] 

 =
3

128
−

2.414217

126.8284
 

 = 0.0234375 − 0.019035 

 = 0.0044025 > 0. 

For 𝑘 = 3 

 =
3

128
−

1

2
[

 (𝛽4)2−1

(𝛽4)2+60
] 

Choose  𝛽3 = 1.84776, (𝑖. 𝑒. , 𝛽4 = 1.961571). 

 =
3

128
−

1

2
[

(1.961571)2−1

(1.961571)2+60
] 

 =
3

128
−

2.847761

127.69552
 

 = 0.0234375 − 0.022301 

 = 0.0011365 > 0. 

Again for 𝑘 = 0 

 =
3

128
−

1

2
[

 (𝛽1)2−1

(𝛽1)2+60
] 

Now choose  𝜷𝟎 = −𝟏, (𝒊. 𝒆. , 𝜷𝟏 = 𝟏). 

 =
3

128
−

1

2
[

(1)2−1

(1)2+60
] 

 =
3

128
− 0 

 = 0.0234375 > 0. 
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For 𝑘 = 1 

 =
3

128
−

1

2
[

 (𝛽2)2−1

(𝛽2)2+60
] 

Choose  𝛽1 = 1, (𝑖. 𝑒. , 𝛽2 = √3 = 1.73205). 

 =
3

128
−

1

2
[

(√3)2−1

(√3)2+60
] 

 =
3

128
−

2

126
 

 = 0.0234375 − 0.015873 

 = 0.0075645 > 0. 

For 𝑘 = 2 

 =
3

128
−

1

2
[

 (𝛽3)2−1

(𝛽3)2+60
] 

Choose  𝛽2 = 1.73205, (𝑖. 𝑒. , 𝛽3 = 1.931851). 

 =
3

128
−

1

2
[

(1.931851)2−1

(1.931851)2+60
] 

 =
3

128
−

2.73205

127.4641
 

 = 0.0234375 − 0.021434 

 = 0.0020035 > 0. 

For 𝑘 = 3 

 =
3

128
−

1

2
[

 (𝛽4)2−1

(𝛽4)2+60
] 

Choose  𝛽3 = 1.931851, (𝑖. 𝑒. , 𝛽4 = 1.98289). 

 =
3

128
−

1

2
[

(1.98289)2−1

(1.98289)2+60
] 

 =
3

128
−

2.93185

127.8637
 

 = 0.0234375 − 0.02293 

 = 0.0005075 > 0. 
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Again for 𝑘 = 0 

 =
3

128
−

1

2
[

 (𝛽1)2−1

(𝛽1)2+60
] 

Now choose  𝜷𝟎 = 𝟎, (𝒊. 𝒆. , 𝜷𝟏 = √𝟐). 

 =
3

128
−

1

2
[

(√2)2−1

(√2)2+60
] 

 =
3

128
−

1

124
 

 = 0.0234375 − 0.008065 

 = 0.0153725 > 0. 

For 𝑘 = 1 

 =
3

128
−

1

2
[

 (𝛽2)2−1

(𝛽2)2+60
] 

  𝛽1 = 1.4142, (𝑖. 𝑒. , 𝛽2 = 1.84776). 

 =
3

128
−

1

2
[

(1.84776)2−1

(1.84776)2+60
] 

 =
3

128
−

2.414217

126.8284
 

 = 0.0234375 − 0.019035 

= 0.0044025 > 0. 

For 𝑘 = 2 

 =
3

128
−

1

2
[

 (𝛽3)2−1

(𝛽3)2+60
] 

 𝛽2 = 1.84776, (𝑖. 𝑒. , 𝛽3 = 1.961571). 

 =
3

128
−

1

2
[

(1.961571)2−1

(1.961571)2+60
] 

 =
3

128
−

2.847761

127.69552
 

 = 0.0234375 − 0.022301 

 = 0.0011365 > 0. 
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For 𝑘 = 3 

 =
3

128
−

1

2
[

 (𝛽4)2−1

(𝛽4)2+60
] 

Choose  𝛽3 = 1.96157, (𝑖. 𝑒. , 𝛽4 = 1.99037). 

 =
3

128
−

1

2
[

(1.99037)2−1

(1.99037)2+60
] 

 =
3

128
−

2.96157

127.9231
 

 = 0.0234375 − 0.023151 

 = 0.0002865 > 0. 

𝟑

𝟏𝟐𝟖
− 𝒈( 𝜷𝒌+𝟏) < 𝟎   𝜷𝒌+𝟏 ∈ (𝟐, +∞). 

 =
3

128
−

1

2
[

 (𝛽𝑘+1)2−1

(𝛽𝑘+1)2+60
] 

For 𝑘 = 0 

 =
3

128
−

1

2
[

 (𝛽1)2−1

(𝛽1)2+60
] 

Choose  𝜷𝟎 = 𝟑, (𝒊. 𝒆. , 𝜷𝟏 = √𝟓). 

 =
3

128
−

1

2
[

(√5)2−1

(√5)2+60
] 

 =
3

128
−

4

130
 

 = 0.0234375 − 0.03076923 

 = −0.00733173 < 0. 

For 𝑘 = 1 

 =
3

128
−

1

2
[

 (𝛽2)2−1

(𝛽2)2+60
] 

Choose  𝛽1 = 2.236, (𝑖. 𝑒. , 𝛽2 = 2.0582). 

 =
3

128
−

1

2
[

(2.0582)2−1

(2.0582)2+60
] 

 =
3

128
−

3.23619

128.4724
 

 = 0.0234375 − 0.0251898 

 = −0.0017523 < 0. 
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For 𝑘 = 2 

 =
3

128
−

1

2
[

 (𝛽3)2−1

(𝛽3)2+60
] 

Choose  𝛽2 = 2.0582, (𝑖. 𝑒. , 𝛽3 = 2.014497). 

 =
3

128
−

1

2
[

(2.014497)2−1

(2.014497)2+60
] 

 =
3

128
−

3.058198

128.116396
 

 = 0.0234375 − 0.023870 

 = −0.0004325 < 0. 

For 𝑘 = 3 

 =
3

128
−

1

2
[

 (𝛽4)2−1

(𝛽4)2+60
] 

Choose  𝛽3 = 2.014497, (𝑖. 𝑒. , 𝛽4 = 2.003621). 

 =
3

128
−

1

2
[

(2.003621)2−1

(2.003621)2+60
] 

 =
3

128
−

3.014497

128.02899
 

 = 0.0234375 − 0.0235454 

 = −0.0001079 < 0. 

Again for 𝑘 = 0 

 =
3

128
−

1

2
[

 (𝛽1)2−1

(𝛽1)2+60
] 

Now choose  𝜷𝟎 = 𝟒, (𝒊. 𝒆. , 𝜷𝟏 = √𝟔). 

 =
3

128
−

1

2
[

(√6)2−1

(√6)2+60
] 

 =
3

128
−

5

132
 

 = 0.0234375 − 0.037879 

 = −0.0144415 < 0. 
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For 𝑘 = 1 

 =
3

128
−

1

2
[

 (𝛽2)2−1

(𝛽2)2+60
] 

Choose  𝛽1 = √6 = 2.449, (𝑖. 𝑒. , 𝛽2 = 2.10927). 

  =
3

128
−

1

2
[

(2.10927)2−1

(2.10927)2+60
] 

 =
3

128
−

3.44902

128.89804
 

 = 0.0234375 − 0.026758 

 = −0.0033205 < 0. 

For 𝑘 = 2 

 =
3

128
−

1

2
[

 (𝛽3)2−1

(𝛽3)2+60
] 

Choose  𝛽2 = 2.10927, (𝑖. 𝑒. , 𝛽3 = 2.027133). 

 =
3

128
−

1

2
[

(2.027133)2−1

(2.027133)2+60
] 

 =
3

128
−

3.10927

128.21854
 

 = 0.0234375 − 0.0242498 

 = −0.0008123 < 0. 

For 𝑘 = 3 

 =
3

128
−

1

2
[

 (𝛽4)2−1

(𝛽4)2+60
] 

Choose  𝛽3 = 2.027133, (𝑖. 𝑒. , 𝛽4 = 2.00677). 

 =
3

128
−

1

2
[

(2.00677)2−1

(2.00677)2+60
] 

 =
3

128
−

3.027126

128.05425
 

 = 0.0234375 − 0.023639 

 = −0.0002015 < 0. 
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Again for 𝑘 = 0 

 =
3

128
−

1

2
[

 (𝛽1)2−1

(𝛽1)2+60
] 

Now choose  𝜷𝟎 = 𝟕, (𝒊. 𝒆. , 𝜷𝟏 = 𝟑). 

 =
3

128
−

1

2
[

(3)2−1

(3)2+60
] 

 =
3

128
−

8

138
 

 = 0.0234375 − 0.0579710 

 = −0.0345335 < 0 

For 𝑘 = 1 

 =
3

128
−

1

2
[

 (𝛽2)2−1

(𝛽2)2+60
] 

 𝛽1 = 3, (𝑖. 𝑒. , 𝛽2 = √5). 

 =
3

128
−

1

2
[

(√5)2−1

(√5)2+60
] 

 =
3

128
−

4

130
 

 = 0.0234375 − 0.03076923 

 = −0.00733173 < 0. 

For 𝑘 = 2 

 =
3

128
−

1

2
[

 (𝛽3)2−1

(𝛽3)2+60
] 

Choose  𝛽2 = 2.236, (𝑖. 𝑒. , 𝛽3 = 2.0582). 

 =
3

128
−

1

2
[

(2.0582)2−1

(2.0582)2+60
] 

 =
3

128
−

3.23619

128.4724
 

 = 0.0234375 − 0.0251898 

 = −0.0017523 < 0. 
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For 𝑘 = 3 

 =
3

128
−

1

2
[

 (𝛽4)2−1

(𝛽4)2+60
] 

Choose  𝛽3 = 2.0582, (𝑖. 𝑒. , 𝛽4 = 2.014497). 

 =
3

128
−

1

2
[

(2.014497)2−1

(2.014497)2+60
] 

 =
3

128
−

3.058198

128.116396
 

 = 0.0234375 − 0.023870 

 = −0.0004325 < 0. 

Now, we are talking about smoothness of (3.6) in the three cases. 

3.3.2 Case 1: 𝜷𝟎 = 𝟐 (𝒊. 𝒆. , 𝜷𝒌+𝟏 = 𝟐) 

Then        ‖𝑒(3)
𝑘 − 𝑒3

∞‖
∞

= 48 [
3

128
−

1

2
[

 (𝛽𝑘+1)2−1

(𝛽𝑘+1)2+60
]] 

For 𝑘 = 0, 

                                       = 48 [
3

128
−

1

2
[

 (𝛽1)2−1

(𝛽1)2+60
]] 

                                      = 48 [
3

128
−

1

2
[

(2)2−1

(2)2+60
]]           

                                       = 48 [
3

128
−

3

128
]  

                                       = 0 

Smoothness of (3.6) follows. 

3.3.3 Case 2: 𝜷𝟎 ∈ [−𝟐, 𝟐)(𝒊. 𝒆. , 𝜷𝒌+𝟏 ∈ [𝟎, 𝟐)). 

In this case 

‖𝑒(3)
𝑘 − 𝑒3

∞‖
∞

= 48 [
3

128
−

1

2
[

 (𝛽𝑘+1)2−1

(𝛽𝑘+1)2+60
]]  

For 𝑘 = 0 

=
3

128
−

1

2
[

 (𝛽1)2−1

(𝛽1)2+60
] 
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Choose  𝜷𝟎 = −𝟐, (𝒊. 𝒆. , 𝜷𝟏 = 𝟎)). 

 = [
3

128
−

1

2
[

(0)2−1

(0)2+60
]] 

 = [
3

128
+

1

120
] 

 = [0.0234375 +  0.008333] 

 = 0.0317705 < +∞. 

For 𝑘 = 1 

 =
3

128
−

1

2
[

 (𝛽2)2−1

(𝛽2)2+60
] 

Now choose  𝛽1 = 0, (𝑖. 𝑒. , 𝛽2 = √2). 

 =
3

128
−

1

2
[

(√2)2−1

(√2)2+60
] 

 =
3

128
−

1

124
 

 = 0.0234375 − 0.008065 

 = 0.0153725 < +∞. 

For 𝑘 = 2 

 =
3

128
−

1

2
[

 (𝛽3)2−1

(𝛽3)2+60
] 

  𝛽2 = 1.4142, (𝑖. 𝑒. , 𝛽3 = 1.84776). 

 =
3

128
−

1

2
[

(1.84776)2−1

(1.84776)2+60
] 

 =
3

128
−

2.414217

126.8284
 

 = 0.0234375 − 0.019035 

 = 0.0044025 < +∞. 

For 𝑘 = 3 

 =
3

128
−

1

2
[

 (𝛽4)2−1

(𝛽4)2+60
] 

 𝛽3 = 1.84776, (𝑖. 𝑒. , 𝛽4 = 1.961571). 

 =
3

128
−

1

2
[

(1.961571)2−1

(1.961571)2+60
] 



60 
 

 =
3

128
−

2.847761

127.69552
 

 = 0.0234375 − 0.022301 

 = 0.0011365 < +∞. 

Again for 𝑘 = 0 

 =
3

128
−

1

2
[

 (𝛽1)2−1

(𝛽1)2+60
] 

Now choose  𝜷𝟎 = −𝟏, (𝒊. 𝒆. , 𝜷𝟏 = 𝟏). 

 =
3

128
−

1

2
[

(1)2−1

(1)2+60
] 

 =
3

128
− 0 

 = 0.0234375 < +∞. 

For 𝑘 = 1 

 =
3

128
−

1

2
[

 (𝛽2)2−1

(𝛽2)2+60
] 

Choose  𝛽1 = 1, (𝑖. 𝑒. , 𝛽2 = √3 = 1.73205). 

 =
3

128
−

1

2
[

(√3)2−1

(√3)2+60
] 

 =
3

128
−

2

126
 

 = 0.0234375 − 0.015873 

 = 0.0075645 < +∞. 

For 𝑘 = 2 

=
3

128
−

1

2
[

 (𝛽3)2−1

(𝛽3)2+60
] 

Choose  𝛽2 = 1.73205, (𝑖. 𝑒. , 𝛽3 = 1.931851). 

 =
3

128
−

1

2
[

(1.931851)2−1

(1.931851)2+60
] 

 =
3

128
−

2.73205

127.4641
 

 = 0.0234375 − 0.021434 

 = 0.0020035 < +∞. 
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For 𝑘 = 3 

 =
3

128
−

1

2
[

 (𝛽4)2−1

(𝛽4)2+60
] 

Choose  𝛽3 = 1.931851, (𝑖. 𝑒. , 𝛽4 = 1.98289). 

 =
3

128
−

1

2
[

(1.98289)2−1

(1.98289)2+60
] 

 =
3

128
−

2.93185

127.8637
 

 = 0.0234375 − 0.02293 

 = 0.0005075 < +∞. 

Thus  

                       ∑ (
3

128
− 𝑔( 𝛽𝑘+1))+∞

𝑘=0 =  ∑ (
3

128
−

1

2
[

 (𝛽𝑘+1)2−1

(𝛽𝑘+1)2+60
]) < +∞.+∞

𝑘=0                                                            

Now for   𝛽0 = −2,  𝛽𝑘+1 = √𝛽𝑘 + 2, 𝑤ℎ𝑒𝑛 𝑘 = 0 , we have 

                                                                  𝛽1 = √𝛽0 + 2 

                                                                  𝛽1 = √−2 + 2 

                                                                  𝛽1 = 0 

This implies  

3

128
− 𝑔( 𝛽1) =  

3

128
−

1

2
[

 (𝛽1)2 − 1

(𝛽1)2 + 60
] 

                                                                  =
3

128
+

1

120
 

                                                              = 0.0234375 + 0.008333 

                                                              = 0.0317705  

𝑤ℎ𝑒𝑛 𝑘 = 1, we have 

                                                            𝛽2 = √𝛽1 + 2 

                                                            𝛽2 = √0 + 2 

                                                             𝛽2 = √2 
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This implies  

                                       
3

128
− 𝑔( 𝛽2) =  

3

128
−

1

2
[

 (𝛽2)2−1

(𝛽2)2+60
] 

                                                                =
3

128
−

1

124
 

                                                                =  0.0234375 − 0.008064516 

                                                                = 0.015373 

Now applying ratio test, we get 

 
3

128 − 𝑔( 𝛽2)

 
3

128 − 𝑔( 𝛽1)
=

3
128 −

1
2 [

 (𝛽2)2 − 1
(𝛽2)2 + 60

]

3
128 −

1
2 [

 (𝛽1)2 − 1
(𝛽1)2 + 60

]
=

0.015373

0.0317705
= 0.483877  < 1 

𝑤ℎ𝑒𝑛 𝑘 = 2, we have 

                                                          𝛽3 = √𝛽2 + 2 

                                                          𝛽3 = √1.4142 + 2 

                                                          𝛽3 = 1.847755 

This implies  

                                  
3

128
− 𝑔( 𝛽3) =  

3

128
−

1

2
[

 (𝛽3)2−1

(𝛽3)2+60
] 

=
3

128
−

2.4142

126.8284
 

                                                           = 0.0234375 − 0.0190352 

                                                           = 0.0044023 

Now applying ratio test, we get 

3
128 − 𝑔( 𝛽3)

3
128 − 𝑔( 𝛽2)

=

3
128 −

1
2 [

 (𝛽3)2 − 1
(𝛽3)2 + 60

]

3
128 −

1
2 [

 (𝛽2)2 − 1
(𝛽2)2 + 60

]
=

0.0044023

0.015373
= 0.286366  < 1. 
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𝑤ℎ𝑒𝑛 𝑘 = 3, we have 

                                                      𝛽4 = √𝛽3 + 2 

                                                      𝛽4 = √1.847755 + 2 

                                                       𝛽4 = 1.961569 

This implies  

                                  
3

128
− 𝑔( 𝛽4) =

3

128
−

1

2
[

 (𝛽4)2−1

(𝛽4)2+60
]             

                                                         =
3

128
−

2.847752

127.69550
  

                                                           = 0.0234375 − 0.0223011    

                                                           = 0.0011364 

 Now applying ratio test, we get 

3
128 − 𝑔( 𝛽4)

3
128 − 𝑔( 𝛽3)

=

3
128 −

1
2 [

 (𝛽4)2 − 1
(𝛽4)2 + 60

]

3
128 −

1
2 [

 (𝛽3)2 − 1
(𝛽3)2 + 60

]
=

0.0011364

0.0044023
= 0.2581378 < 1. 

We use the ratio test to this end. Since  
3

128
− 𝑔( 𝛽𝑘+1) > 0 and the sequence {𝛽𝑘}𝑘∈𝑁 is strictly 

increases in this case, we got it  

3
128 −

1
2 [

 (𝛽𝑘+2)2 − 1
(𝛽𝑘+2)2 + 60

]

3
128 −

1
2 [

 (𝛽𝑘+1)2 − 1
(𝛽𝑘+1)2 + 60

]

 < 1. 

The smoothness of (3.6) has therefore been proven.  

3.3.4 Case 3:     𝜷𝟎 ∈ (𝟐, +∞)(𝒊. 𝒆 𝜷𝒌+𝟏 ∈ (𝟐, +∞). 

In this case               

‖𝑒(3)
𝑘 − 𝑒3

∞‖
∞

= 48 [
1

2
{

 (𝛽𝑘+1)2 − 1

(𝛽𝑘+1)2 + 60
} −

3

128
] 

For 𝑘 = 0 

 =
1

2
[

 (𝛽1)2−1

(𝛽1)2+60
] −

3

128
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Choose  𝜷𝟎 = 𝟑, (𝒊. 𝒆. , 𝜷𝟏 = √𝟓)). 

  = [
1

2
{

(√5 )2−1

(√5 )
2

+60
} −

3

128
] 

 = [
4

130
−

3

128
] 

 = [0.03077 − 0.0234375]   

 = 0.0073325 < +∞. 

For 𝑘 = 1 

 =
1

2
[

 (𝛽2)2−1

(𝛽2)2+60
] −

3

128
 

Choose  𝛽1 = 2.236, (𝑖. 𝑒. , 𝛽2 = 2.0582). 

 =
1

2
[

(2.0582)2−1

(2.0582)2+60
] −

3

128
 

 =
3.23619

128.4724
−

3

128
 

 = 0.0251898 − 0.0234375 

 = 0.0017523 < +∞. 

For 𝑘 = 2  

 =
1

2
[

 (𝛽3)2−1

(𝛽3)2+60
] −

3

128
 

Choose  𝛽2 = 2.0582, (𝑖. 𝑒. , 𝛽3 = 2.014497). 

 =
1

2
[

(2.014497)2−1

(2.014497)2+60
] −

3

128
 

 =
3.058198

128.116396
−

3

128
 

 = 0.023870 − 0.0234375 

 = 0.0004325 < +∞. 

For 𝑘 = 3 

 =
1

2
[

 (𝛽4)2−1

(𝛽4)2+60
] −

3

128
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Choose  𝛽3 = 2.014497, (𝑖. 𝑒. , 𝛽4 = 2.003621). 

 =
1

2
[

(2.003621)2−1

(2.003621)2+60
] −

3

128
 

 =
3.014497

128.02899
−

3

128
 

 = 0.0235454 − 0.0234375 

 = 0.0001079 < +∞. 

Again for 𝑘 = 0 

 =
1

2
[

 (𝛽1)2−1

(𝛽1)2+60
] −

3

128
 

Now choose  𝜷𝟎 = 𝟒, (𝒊. 𝒆. , 𝜷𝟏 = √𝟔). 

 =
1

2
[

(√6)
2

−1

(√6)
2

+60
] −

3

128
 

 =
5

132
−

3

128
 

 = 0.037879 − 0.0234375 

 = 0.0144415 < +∞. 

For 𝑘 = 1 

 =
1

2
[

 (𝛽2)2−1

(𝛽2)2+60
] −

3

128
 

Choose  𝛽1 = √6 = 2.449, (𝑖. 𝑒. , 𝛽2 = 2.10927). 

 =
1

2
[

(2.10927)2−1

(2.10927)2+60
] −

3

128
 

 =
3.44902

128.89804
−

3

128
 

 = 0.026758 − 0.0234375 

 = 0.0033205 < +∞. 

For 𝑘 = 2 

 =
1

2
[

 (𝛽3)2−1

(𝛽3)2+60
] −

3

128
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Choose  𝛽2 = 2.10927, (𝑖. 𝑒. , 𝛽3 = 2.027133). 

 =
1

2
[

(2.027133)2−1

(2.027133)2+60
] −

3

128
 

 =
3.10927

128.21854
−

3

128
 

 = 0.0242498 − 0.0234375 

 = 0.0008123 < +∞. 

For 𝑘 = 3 

 =
1

2
[

 (𝛽4)2−1

(𝛽4)2+60
] −

3

128
 

Choose  𝛽3 = 2.027133, (𝑖. 𝑒. , 𝛽4 = 2.00677). 

 =
1

2
[

(2.00677)2−1

(2.00677)2+60
] −

3

128
 

 =
3.027126

128.05425
−

3

128
 

 = 0.023639 − 0.0234375 

 = 0.0002015 < +∞. 

Thus  

∑ (𝑔( 𝛽𝑘+1) −
3

128
)

+∞

𝑘=0

=  ∑ (
1

2
{

 (𝛽𝑘+1)2 − 1

(𝛽𝑘+1)2 + 60
} −

3

128
) < +∞.

+∞

𝑘=0

 

3.3.4.1 Case 3.1 

The sequence {𝛽𝑘}𝑘∈𝑁 in this case is strictly decreasing. 

For   𝛽0 = 3,  𝛽𝑘+1 = √𝛽𝑘 + 2, 𝑤ℎ𝑒𝑛 𝑘 = 0 , we have 

                                                                  𝛽1 = √𝛽0 + 2 

                                                                  𝛽1 = √3 + 2 

                                                                  𝛽1 = √5 
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This implies  

𝑔( 𝛽1) −
3

128
=  

1

2
[

 (𝛽1)2 − 1

(𝛽1)2 + 60
] −

3

128
 

                                                                  =
4

130
−

3

128
 

                                                                  = 0.03077 − 0.0234375 

                                                                  = 0.0073325 

𝑤ℎ𝑒𝑛 𝑘 = 1, we have 

                                                            𝛽2 = √𝛽1 + 2 

                                                            𝛽2 = √2.23607 + 2 

                                                             𝛽2 = 2.05817152 

This implies  

                                        𝑔( 𝛽2) −
3

128
=  

1

2
[

 (𝛽2)2−1

(𝛽2)2+60
] −

3

128
 

                                                                 =
3.23607

128.47214
−

3

128
 

                                                                 = 0.0251889 − 0.0234375 

                                                                 = 0.00175139 

Now applying ratio test, we get 

𝑔( 𝛽2) −
3

128

𝑔( 𝛽1) −
3

128

=
 
1
2 [

 (𝛽2)2 − 1
(𝛽2)2 + 60

] −
3

128

 
1
2 [

 (𝛽1)2 − 1
(𝛽1)2 + 60

] −
3

128

=
0.00175139

0.0073325
= 0.238853 < 1 

𝑤ℎ𝑒𝑛 𝑘 = 2 , we have 

                                                          𝛽3 = √𝛽2 + 2 

                                                          𝛽3 = √2.0581715 + 2 

                                                          𝛽3 = 2.01449 
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This implies  

𝑔( 𝛽3) −
3

128
=  

1

2
[

 (𝛽3)2 − 1

(𝛽3)2 + 60
] −

3

128
 

                                                                  =
3.05817

128.1163
−

3

128
 

                                                                  = 0.023870 − 0.0234375 

                                                                  = 0.0004325 

Now applying ratio test, we get 

𝑔( 𝛽3) −
3

128

𝑔( 𝛽2) −
3

128

=

1
2 [

 (𝛽3)2 − 1
(𝛽3)2 + 60

] −
3

128

1
2 [

 (𝛽2)2 − 1
(𝛽2)2 + 60

] −
3

128

=
0.0004325

0.00175139
= 0.24695 < 1 

𝑤ℎ𝑒𝑛 𝑘 = 3, we have 

                                                           𝛽4 = √𝛽3 + 2 

                                                           𝛽4 = √2.01449 + 2 

                                                           𝛽4 = 2.00362 

This implies  

                                     𝑔( 𝛽4) −
3

128
=  

1

2
[

 (𝛽4)2−1

(𝛽4)2+60
] −

3

128
 

                                                              =
3.01449

128.02899
−

3

128
  

                                                              = 0.02355 − 0.0234375    

                                                              = 0.0001125 

    Now applying ratio test, we get 

𝑔( 𝛽4) −
3

128

𝑔( 𝛽3) −
3

128

=
 
1
2 [

 (𝛽4)2 − 1
(𝛽4)2 + 60

] −
3

128

 
1
2 [

 (𝛽3)2 − 1
(𝛽3)2 + 60

] −
3

128

=
0.0001125

0.0004325
= 0.260116 < 1 

Use the ratio test to this end. The sequence {𝛽𝑘}𝑘∈𝑁 decreases strictly this is how it is 

1
2 [

 (𝛽𝑘+2)2 − 1
(𝛽𝑘+2)2 + 60

] −
3

128

1
2 [

 (𝛽𝑘+1)2 − 1
(𝛽𝑘+1)2 + 60

] −
3

128

 < 1 
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The smoothness of (3.6) has therefore been proven.  

3.4 Graphical View 

We would like to give an example in this section to depict the benefit of the developed 

technique (3.3). As mentioned in section 3.2, the curves generated tend to approximate the 

initial discrete polygon of control when 𝛽0 → +∞. 
In Figure 3.1, Generating wide range of C3-continuous limiting curves for different values of 

parameters. (a) 𝛽0 = −2 (b) 𝛽0 = −1, (c) 𝛽0 = 0, (d) 𝛽0 = 1, (e) 𝛽0 = 5, (f) 𝛽0 = 10, 

(g) 𝛽0 = 25, (h) 𝛽0 = 50, (i) 𝛽0 = 100. 
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Figure 3.1: Generating wide range of C3-continuous limiting curves using the proposed 

scheme (3.3) for different values of parameter. (a) 𝛽0 = −2, (b) 𝛽0 = −1, (c) 𝛽0 = 0, 

(d) 𝛽0 = 1, (e) 𝛽0 = 5, (f) 𝛽0 = 10, (g) 𝛽0 = 25, (h) 𝛽0 = 50, (i) 𝛽0 = 100. 
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Conclusion 

 

In this thesis, a new non-stationary binary four-point approximating Subdivision Scheme has 

been introduced which generates a family of C3 limiting curves for the wider range of shape 

control parameters 𝛽0 ∈ [−2, +∞). The proposed scheme offers considerable flexibility in the 

construction of C3 forms in geometric design. The derivative continuity of the technique is 

investigated by the facts of Dyn and Levin [25]. 
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1.1.4 Iterative Method 

An iterative method is a mathematical procedure that uses an initial guess to generate a 

sequence of improving an approximate solution for a class of problem in which the     

approximation is derived from the previous ones. 

1.1.5 Refinement 

A refinement of a cover is a cover such that every element is a subset of an element. 

1.1.6 Sequence 

A sequence is an arrangement of numbers written in definite order according to some specific 

rule. 

1.1.7 Increasing sequence 

Consider    is a sequence of     term, so if          for all  , the sequence is said to be 

increasing. This means that for all    we have       ⁄          

1.1.8 Decreasing sequence 

Consider    is a sequence of     term, so if          for all  , the sequence is said to be 

decreasing. This means that for all    we have       ⁄          

1.1.9 Control Point 

A control point is a member of a set of points used to determine the shape of a spline curve or 

more generally, a surface or higher dimensional object in computer aided geometric design. 

1.1.10 Control Polygon 

Control polygon is the sequence of control points in space that is usually used to control an 

object’s shape. 

1.1.11 Ratio test 

Let ∑   
 
  be a series of positive terms and suppose that       

    

  
    

where   is a real number or non-negative numbers 

 If      the series  ∑   
 
  converges. 

 If      the series  ∑   
 
  diverge. 

 If     the test fails to determine convergence or divergence of the series. 

1.1.12 Limit curve 

In mathematics, a limit is the value approached by a function as the input approaches a 

specific value. 
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The two schemes are then equivalent asymptotically. And we can conclude that the   
  

scheme is C
3
. 

 Since             
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 |   |

 

  
          | } 

             ‖    
    

 ‖
 

   |         
 

  
 | 

To prove (2.4), we must prove the smoothness between the series 

                                                   ∑ |         
 

  
|  

                                       …………  (2.5) 

which depends on the          function. Now, since          is expressed in relation (2.2) 

in terms of the parameter        we will study the behaviour of (2.5), since      varies in the 

interval [0, +  . From now on 
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2.3.3 Case 2: 

                                       

In this case 
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Chapter # 3 

A non-stationary four-point subdivision technique 

3.1 Stationary four-point subdivision technique 

                             Kim et al. [13] proposed a binary subdivision scheme with four points that 

generates a smooth C
3
-continuous limiting curve. Given the set of control points    

{  
 }    at level 0, the binary four point SS for the design of curves generates a new set of 

control points {  
   }    at level k+1 using the following subdivision  rules 

   
       

     
    

     
    

   
    

     
    

     
  

                                  
     

 

  
    

  
 

  
  

  
 

  
    

  
 

  
    

 .                       …………(3.1) 

Where    {  
 }    is the set of initial control point at level 0 and the mask of the scheme, 

the relationship                  shall be met. The scheme coefficients (3.1) are 

    
 

   
    

  

   
    

   

   
    

  

   
    

 

   
  

       They found that the scheme is   -continuous when and the scheme is   -continuous 

when              and the scheme is   -continuous when             . For the 

range of             , the proposed scheme is non-stationary scheme. 

3.2 Non-stationary four-point subdivision technique 

         The refining rules of the binary non-stationary SS of four points are defined as 

   
       

     
    

     
    

   
    

     
    

     
  

                                  
     

 

  
    

  
 

  
  

  
 

  
    

  
 

  
    

 .                     ………….(3.2) 

Where    {  
 }    is the set of initial control point at level 0 and the mask of the scheme, 

the relationship                  shall be met. 

The binary non-stationary four point subdivision scheme (3.2) is counter part of stationary 

scheme [13]. The mask of the scheme are given by  

   
            

         
             

                       

             
 

 
 
          

          
                                                                                   ……..….(3.3) 

With  

      √                                                                                      …………(3.4) 
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   [  (     )   
 

  
   (     ) 
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    (     )   

 

  
   (     )] 

Then it turns out its first divided difference masks are 

 ( )
   

[
 
 
 
   (     ) ( (     )  

 

  
)  (  (     )  

 

  
)  .

 

 
   (     )/  
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   (     )/  (  (     )  

 

  
)  ( (     )  

 

  
)    (     )
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Then it turns out its 2
nd

 divided difference masks are 

 ( )
   

[
 
 
 
   (     ) (  (     )  

 

  
)  ( (     )  

 

 
)  .

 

 
   (     )/  

( (     )  
 

 
)  (  (     )  

 

  
)    (     )

]
 
 
 
 

 

Then it turns out its 3
rd

 divided difference masks are 

                ( )
   [

  (     ) (  (     )  
 

  
)  (   (     )  

 

  
)  

(   (     )  
 

  
)  (  (     )  

 

  
)    (     )

] 

The application of Remark 2 now provides  

                ( )
           

   * 
 

   
 

 

   
  

  

   
 

  

   
 

 

   
  

 

   
+ 

This is just the coefficients of the third divided differences of the stationary technique with 

coefficients in equation (3.1). In this case, the stationary technique is C
3
-continuous, the 

technique associated with   
  will be C

3 
smooth. If it is as  

                                           ∑ ‖ ( )
    

 ‖
 

     
                                               ………(3.5) 

The two techniques are then equivalent asymptotically. And one can conclude this that the 

  
  of the technique is C

3
, since then 

 ( )
    

    (   (     )  
 

   
)     (   (     )  

 

   
)  (   (     )  

 

   
)    

‖ ( )
    

 ‖
 

     ,|   (  
   

)   

   
|  |  |  |   (  

   
)   

   
|  | | |   (  

   
)  

 

   
|-                   = 24|   (     )  

 

   
 | 

                          = 48|
 

   
   (     )| 

Now we are proving the series smoothness  

                                             ∑ |
 

   
  (     )|  

   .                                              ………..(3.6) 
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Conclusion 

 

In this thesis, a new non-stationary binary four-point approximating subdivision scheme has 

been introduced which generates a family of C
3
 limiting curves for the wider range of shape 

control parameters           . The proposed scheme offers considerable flexibility in 

the construction of C
3
 forms in geometric design. The derivative continuity of the technique 

is investigated by the facts of Dyn and Levin [25]. 

 
 


